
$\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})$

Couldn't we define an "effective" voltage that would allow us to use the same relationships for AC power as used for DC power?

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ave}}=\frac{\left(\frac{\mathrm{v}_{\mathrm{p}}^{2}}{\mathrm{R}}\right)^{2}}{2}=\frac{\left(\frac{\mathrm{v}_{\mathrm{p}}^{2}}{2}\right)^{2}}{\mathrm{R}}=\frac{\left(\frac{\mathrm{v}_{\mathrm{p}}}{\sqrt{2}}\right)^{2}}{\mathrm{R}} \\
& \mathrm{~V}_{\mathrm{eff}}=\sqrt{\left(\frac{\mathrm{v}_{\mathrm{p}}}{\sqrt{2}}\right)^{2}}=\frac{\mathrm{v}_{\mathrm{p}}}{\sqrt{2}}=\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}} \\
& \text { Root }^{\text {Soan (average) }}
\end{aligned}
$$

RMS Root of the Mean of the Square

Use RMS in power calculations

Sinusoids

$$
\begin{aligned}
\mathrm{V}_{\mathrm{rms}} & =\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right)^{2} \mathrm{dt}}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} \mathrm{~V}_{\mathrm{p}}^{2} \cdot\left(\frac{1}{2}+\frac{1}{2} \cdot \cos (2 \cdot \omega \cdot \mathrm{t})\right) \mathrm{dt}} \\
& =\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{2}} \cdot \sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(1) \mathrm{dt}+\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} \cos (2 \cdot \omega \cdot \mathrm{t}) \mathrm{dt} \quad=\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{2}} \cdot \sqrt{1+0}}
\end{aligned}
$$

Common household power
$f=60 \cdot \mathrm{~Hz}$
$\omega=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\mathrm{T}=16.67 \cdot \mathrm{~ms}$

$$
=10.07 \cdot \mathrm{cls}
$$

-

What about other wave shapes??

Works for all types of triangular and sawtooth waveforms

Same for DC

How about AC + DC ?

$$
\begin{aligned}
\mathrm{V}_{\mathrm{rms}} & =\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}} \\
& =\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{V}_{\mathrm{DC}}\right)^{2} \mathrm{dt}}
\end{aligned}
$$

$$
=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left[\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right)^{2}+2 \cdot\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right) \cdot \mathrm{V}_{\mathrm{DC}}+\mathrm{V}_{\mathrm{DC}}{ }^{2}\right] \mathrm{dt}}
$$

$$
=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right)^{2} \mathrm{dt}+\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} 2 \cdot\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right) \cdot \mathrm{V}_{\mathrm{DC}} \mathrm{dt}+\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} \mathrm{~V}_{\mathrm{DC}}{ }^{2} \mathrm{dt}}
$$

$$
=\sqrt{\mathrm{v}_{\mathrm{rmsAC}}{ }^{2}+0+\mathrm{V}_{\mathrm{DC}}{ }^{2}}=\sqrt{\mathrm{v}_{\mathrm{rmsAC}}{ }^{2}+\mathrm{V}_{\mathrm{DC}}{ }^{2}}
$$

\cap sinusoid: $\quad V_{r m s}=\frac{V_{p}}{\sqrt{2}} \quad I_{r m s}=\frac{I_{p}}{\sqrt{2}}$
\wedge triangular: $\quad V_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{3}} \quad \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{\mathrm{p}}}{\sqrt{3}}$
\square square
$\mathrm{V}_{\mathrm{rms}}=\mathrm{V}_{\mathrm{p}}$
$\mathrm{I}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{p}}$

ת. waveform + DC $\quad V_{\mathrm{rms}}=\sqrt{V_{\mathrm{rmsAC}}}{ }^{2}+\mathrm{V}_{\mathrm{DC}}{ }^{2}$
rectified average $\mathrm{V}_{\mathrm{ra}}=\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}|\mathrm{v}(\mathrm{t})| \mathrm{dt}$

$$
\Omega_{\mathrm{Va}}=\frac{2}{\pi} \cdot \mathrm{~V}_{\mathrm{p}} \quad \quad \mathrm{I}_{\mathrm{ra}}=\frac{2}{\pi} \cdot \mathrm{I}_{\mathrm{p}}
$$

$\mathrm{V}_{\mathrm{ra}}=\frac{1}{2} \cdot \mathrm{~V}_{\mathrm{p}}$
$\mathrm{I}_{\mathrm{ra}}=\frac{1}{2} \cdot \mathrm{I}_{\mathrm{p}}$
$\mathrm{V}_{\mathrm{ra}}=\mathrm{V}_{\mathrm{rms}}=\mathrm{V}_{\mathrm{p}} \quad \mathrm{I}_{\mathrm{ra}}=\mathrm{I}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{p}}$ Most AC meters don't measure true RMS. Instead, they measure V_{ra}, display $1.11 \mathrm{~V}_{\mathrm{ra}}$, and call it RMS. That works for sine waves but not for any other waveform.

Use RMS in power calculations

Some waveforms don't fall into these forms, then you have to perform the math from scratch
For waveform shown
The average $\mathrm{DC}\left(\mathrm{V}_{\mathrm{DC}}\right)$ value

$$
\frac{2 \cdot \mathrm{~V} \cdot(4 \cdot \mathrm{~ms})+(-5 \cdot \mathrm{~V}) \cdot(2 \cdot \mathrm{~ms})}{6 \cdot \mathrm{~ms}}=-0.333 \cdot \mathrm{~V}
$$

The RMS (effective) value

OR...
$V_{\text {RMS }}=\sqrt{\frac{1}{T} \cdot \int_{0}^{T}(v(t))^{2} d t}$

$$
=\sqrt{\frac{1}{6 \cdot \mathrm{~ms}} \cdot\left[\int_{0 \cdot \mathrm{~ms}}^{4 \cdot \mathrm{~ms}}(2 \cdot \mathrm{~V})^{2} \mathrm{dt}+\int_{4 \cdot \mathrm{~ms}}^{6 \cdot \mathrm{~ms}}(-5 \cdot \mathrm{~V})^{2} \mathrm{dt}\right]}=\sqrt{\frac{1}{6 \cdot \mathrm{~ms}} \cdot\left[4 \cdot \mathrm{~ms} \cdot(2 \cdot \mathrm{~V})^{2}+2 \cdot \mathrm{~ms} \cdot(-5 \cdot \mathrm{~V})^{2}\right]}=3.32 \cdot \mathrm{~V}
$$

The voltage is hooked to a resistor, as shown, for 6 seconds.
The energy is transfered to the resistor during that 6 seconds:

$$
\mathrm{P}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{RMS}}{ }^{2}}{\mathrm{R}_{\mathrm{L}}} \quad \mathrm{P}_{\mathrm{L}}=0.22 \cdot \mathrm{~W}
$$

$\mathrm{W}_{\mathrm{L}}:=\mathrm{P}_{\mathrm{L}} \cdot 6 \cdot \mathrm{sec} \quad \quad \mathrm{W}_{\mathrm{L}}=1.32 \cdot$ joule \quad All converted to heat

Capacitors and Inductors

Average power is ZERO $\quad \mathrm{P}=0$
Average power is ZERO $\quad \mathrm{P}=0$
Capacitors and Inductors DO NOT dissipate (real) average power.

Reactive power is negative

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{C}} & =-\mathrm{I}_{\mathrm{Crms}}{ }^{\mathrm{V}} \mathrm{Crms} \\
& =-\mathrm{I} \mathrm{Crms}^{2} \cdot \frac{1}{\omega \cdot \mathrm{C}}=-\mathrm{V}_{\mathrm{Crms}}{ }^{2} \cdot \omega \cdot \mathrm{C}
\end{aligned}
$$

Reactive power is positive

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{Lrms}} \cdot \mathrm{~V}_{\text {Lrms }} \\
& =\mathrm{I}_{\text {Lrms }}{ }^{2} \cdot \omega \cdot \mathrm{~L}=\frac{\mathrm{V}_{\text {Lrms }}{ }^{2}}{\omega \cdot \mathrm{~L}}
\end{aligned}
$$

If current and voltage are not in phase, only the in-phase part of the current matters for the power-- DOT PRODUCT

"Lagging" power
Inductor dominates

"Leading" Power
Capacitor dominates

$$
\mathrm{P}=\mathrm{I}_{\mathrm{Rrms}}{ }^{2} \cdot \mathrm{R}=\frac{\mathrm{V}_{\mathrm{Rrms}}{ }^{2}}{\mathrm{R}} \quad M \text { for Resistors ONLY!! }
$$

other wise....
$\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cdot \cos (\theta)=\mathrm{I}_{\mathrm{rms}}{ }^{2} \cdot|\mathbf{Z}| \cdot \cos (\theta)=\frac{\mathrm{V}_{\mathrm{rms}}{ }^{2}}{|\mathbf{Z}|} \cdot \cos (\theta)$
units: watts, kW , MW, etc.
$\mathrm{P}=$ "Real" Power (average) $=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cdot \mathrm{pf}=\mathrm{I}_{\mathrm{rms}}{ }^{2} \cdot|\mathbf{Z}| \cdot \mathrm{pf}=\frac{\mathrm{V}_{\mathrm{rms}}{ }^{2}}{|\mathbf{Z}|} \cdot \mathrm{pf}$

Reactive Power

$$
\begin{array}{lll}
H \text { capacitors }->-\mathrm{Q} & \mathrm{Q}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Crms}}{ }^{2} \cdot \mathrm{X}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{Crms}}{ }^{2}}{\mathrm{X}_{\mathrm{C}}} & \mathrm{X}_{\mathrm{C}}=-\frac{1}{\omega \cdot \mathrm{C}} \text { and is a negative number } \\
\text { inductors }->+\mathrm{Q} & \mathrm{Q}_{\mathrm{L}}=\mathrm{I}_{\mathrm{Lrms}}{ }^{2} \cdot \mathrm{X}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{Lrms}}{ }^{2}}{\mathrm{X}_{\mathrm{L}}} & \mathrm{X}_{\mathrm{L}}=\omega \cdot \mathrm{L} \text { and is a positive number }
\end{array}
$$

other wise....
$\mathrm{Q}=$ Reactive "power" $=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cdot \sin (\theta) \quad$ units: VAR, kVAR, etc. "volt-amp-reactive"

Complex and Apparent Power

complex congugate
$\mathbf{S}=$ Complex "power" $=\mathbf{V}_{\text {rms }} \overline{\mathbf{I}_{\mathbf{r m s}}}=\mathrm{P}+\mathrm{jQ}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \underline{\theta} \quad$ units: $\mathrm{VA}, \mathrm{kVA}$, etc. \quad "volt-amp"
NOT $\quad \mathrm{I}_{\mathrm{rms}}{ }^{2} \cdot \mathbf{Z}$ NOR $\frac{\mathrm{V}_{\mathrm{rms}}{ }^{2}}{\mathrm{Z}}$
$\mathrm{S}=$ Apparent "power" $=|\mathbf{S}|=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}} \quad$ units: $\mathrm{VA}, \mathrm{kVA}$, etc. "volt-amp"

Power factor

pf $=\cos (\theta)=$ power factor (sometimes expressed in \%) $0 \leq \mathrm{pf} \leq 1$
θ is the phase angle between the voltage and the current or the phase angle of the impedance. $\theta=\theta_{\mathrm{Z}}$
$\theta<0$ Load is "Capacitive", power factor is "leading". This condition is very rare
$\theta>0$ Load is "Inductive", power factor is "lagging". This condition is so common you can assume any power factor given is lagging unless specified otherwise. Transformers and motors make most loads inductive.
Industrial users are charged for the reactive power that they use, so power factor < 1 is a bad thing.
Power factor < 1 is also bad for the power company. To deliver the same power to the load, they have more line current (and thus more line losses).

Power factors are "corrected" by adding capacitors (or capacitve loads) in parallel with the inductive loads which cause the problems. (In the rare case that the load is capacitive, the pf would be corrected by an inductor.)

ECE 3600

"Leading" Power

