Ex. 1 R \& L together are the load. Find the real power P , the reactive power Q , the complex power \mathbf{S}, the apparent power $|\mathbf{S}|$, \& the power factor pf. Draw phasor diagram for the power.

$\mathrm{L}:=25 \cdot \mathrm{mH}$
load
$\mathbf{Z}=4.704+4.991 \mathrm{j} \cdot \Omega \quad|\mathbf{Z}|=6.859 \cdot \Omega$
$\theta:=\arg (\mathbf{Z})$
$\theta=46.7 \cdot \mathrm{deg}$
pf $:=\cos (\theta)$
$\mathrm{pf}=0.686$
$\mathbf{I}:=\frac{\mathbf{V}_{\text {in }}}{\mathbf{Z}}$
$\mathbf{I}=11-11.671 \mathrm{j} \cdot \mathrm{A}$
$|\mathbf{I}|=16.038 \cdot \mathrm{~A}$
$\arg (\mathbf{I})=-46.7 \cdot \operatorname{deg}$
$\mathbf{P}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \mathrm{pf}$
$\mathrm{P}=1.21 \cdot \mathrm{~kW}$
$\mathrm{Q}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \sin (\theta) \quad \mathrm{Q}=1.284 \cdot \mathrm{kVAR}$
OR... $\quad \mathrm{Q}:=|\mathbf{V} \mathbf{i n}| \cdot|\mathbf{I}| \cdot \sqrt{1^{2}-\mathrm{pf}^{2}} \quad \mathrm{Q}=1.284 \cdot \mathrm{kVAR}$
$\mathbf{S}:=\mathbf{V}_{\text {in }} \cdot \overline{\mathbf{I}} \quad$ OR.. $\quad \mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q}$
$\mathbf{S}=1.21+1.284 \mathrm{j} \cdot \mathrm{kVA}$
$\mathbf{S}:=\sqrt{\operatorname{Re}(\mathbf{S})^{2}+\operatorname{Im}(\mathbf{S})^{2}}=|\mathbf{S}|=1.764 \cdot \mathrm{kVA}$

$$
\operatorname{atan}\left(\frac{\operatorname{Im}(\mathbf{S})}{\operatorname{Re}(\mathbf{S})}\right)=46.696 \cdot \operatorname{deg}
$$

$\mathbf{S}=1.764 \mathrm{kVA} \underline{46.7^{\circ}}$
OR, since we know that the voltage across each element of the load is $\mathrm{V}_{\text {in }} \ldots$
Real power is dissipated only by resistors $\mathrm{P}:=\frac{\left(\left|\mathbf{V}_{\mathbf{i n}}\right|\right)^{2}}{\mathrm{R}} \quad \mathrm{P}=1.21 \cdot \mathrm{~kW} \quad \mathrm{Q}:=\frac{\left(\left|\mathbf{V}_{\mathbf{i n}}\right|\right)^{2}}{\omega \cdot \mathrm{~L}} \quad \mathrm{Q}=1.284 \cdot \mathrm{kVAR}$
$\mathbf{S}:=\mathbf{P}+\mathrm{j} \cdot \mathrm{Q}$
$\mathbf{S}=|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=1.764 \cdot \mathrm{kVA} \quad \mathrm{pf}=\frac{\mathrm{P}}{|\mathbf{S}|}=0.686$
What value of C in parallel with $\mathrm{R} \& \mathrm{~L}$ would make $\mathrm{pf}=1 \quad(\mathrm{Q}=0) ?$

$$
\operatorname{Im}(\mathbf{I})=-11.671 \cdot \mathrm{~A} \quad \mathrm{X}_{\mathrm{C}}:=\frac{\mathbf{V}_{\mathbf{i n}}}{\operatorname{Im}(\mathbf{I})} \quad \mathrm{X}_{\mathrm{C}}=-9.425 \cdot \Omega=\frac{-1}{\omega \cdot \mathrm{C}}
$$

$\frac{1}{\left|\mathrm{X}_{\mathrm{C}}\right| \cdot \omega}=281 \cdot \mu \mathrm{~F} \quad$ OR.. $\quad \omega=\frac{1}{\sqrt{\mathrm{~L} \cdot \mathrm{C}}} \quad \mathrm{C}:=\frac{1}{\mathrm{~L} \cdot \omega^{2}} \quad \mathrm{C}=281 \cdot \mu \mathrm{~F}$
Ex. 2 R \& L together are the load. Find the real power P , the reactive power Q , the complex power \mathbf{S}, the apparent power $|\mathbf{S}|, \&$ the power factor pf. Draw phasor diagram for the power.

ECE 3600 AC Power Examples, p. 1

ECE 3600 AC Power Examples, p. 2

OR, if we first find the magnitude of the current which flows through each element of the load...

$$
\begin{aligned}
& |\mathbf{I}|=\frac{\mathbf{V}_{\mathbf{i n}}}{\sqrt{\mathrm{R}^{2}+(\omega \cdot \mathrm{L})^{2}}}=8.005 \cdot \mathrm{~A} \\
& \mathbf{P}:=(|\mathbf{I}|)^{2} \cdot \mathrm{R} \quad \mathrm{P}=0.641 \cdot \mathrm{~kW} \quad \mathrm{Q}:=(|\mathbf{I}|)^{2} \cdot(\omega \cdot \mathrm{~L}) \quad \mathrm{Q}=0.604 \cdot \mathrm{kVAR} \\
& \mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} \quad|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=0.881 \cdot \mathrm{kVA} \quad \mathrm{pf}=\frac{\mathrm{P}}{|\mathbf{S}|}=0.728
\end{aligned}
$$

What value of C in parallel with $\mathrm{R} \& \mathrm{~L}$ would make $\mathrm{pf}=1 \quad(\mathrm{Q}=0)$?

$$
\begin{aligned}
& \text { Nhat value of C in parallel with } \mathrm{R} \& \mathrm{~L} \text { would make } \mathrm{pf}=1(\mathrm{Q}=0) ? \\
& \mathrm{Q}=603.9 \cdot \mathrm{VAR} \quad \text { so we need: } \quad \mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{C}}=-603.9 \cdot \mathrm{VAR}=\frac{\mathrm{V}_{\mathrm{in}}{ }^{2}}{\mathrm{X}_{\mathrm{C}}} \\
& \mathrm{X}_{\mathrm{C}}:=\frac{\mathbf{V}_{\text {in }}{ }^{2}}{\mathrm{Q}_{\mathrm{C}}} \quad \mathrm{X}_{\mathrm{C}}=-20.035 \cdot \Omega=\frac{-1}{\omega \cdot \mathrm{C}} \quad \mathrm{C}:=\frac{1}{\left|\mathrm{X}_{\mathrm{C}}\right| \cdot \omega} \quad \mathrm{C}=132 \cdot \mu \mathrm{~F}
\end{aligned}
$$

Check:

$$
\frac{1}{\frac{1}{R+j \cdot \omega \cdot L}+j \cdot \omega \cdot C}=18.883 \cdot \Omega \quad \text { No } j \text { term, so } \theta=0^{\circ}
$$

Ex. 3 R , \& C together are the load in the circuit shown. The RMS voltmeter measures 240 V , the RMS ammeter measures 3 A , and the wattmeter measures 600 W . Find the following: Be sure to show the correct units for each value.
a) The value of the load resistor. $R_{L}=$?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{I}^{2} \cdot \mathrm{R}_{\mathrm{L}} \\
& \mathrm{R}_{\mathrm{L}}:=\frac{\mathrm{P}}{\mathrm{I}^{2}} \quad \mathrm{R}_{\mathrm{L}}=66.7 \cdot \Omega
\end{aligned}
$$

b) The apparent power. $|\mathbf{S}|=$? $\quad \mathrm{S}:=\mathrm{V}_{\mathrm{s}} \cdot \mathrm{I}$

c) The reactive power. $\mathrm{Q}=$?
$Q:=-\sqrt{S^{2}-P^{2}}$
$\mathbf{S}:=\mathbf{P}+\mathrm{j} \cdot \mathrm{Q}$
$\mathrm{Q}=-398 \cdot \mathrm{VAR}$
d) The complex power. $\mathbf{S}=$?
$\mathbf{S}=600-398 \mathrm{i} \cdot \mathrm{VA}$
$S=720 \cdot V A$
e) The power factor. $\mathrm{pf}=$?
$\mathrm{pf}:=\frac{\mathrm{P}}{\mathrm{V}_{\mathrm{S}} \cdot \mathrm{I}}$
$\mathrm{pf}=0.833$
f) The power factor is leading or lagging? leading (load is capacitive, Q is negative)
g) The two components of the load are in a box which cannot be opened. Add (draw it) another component to the circuit above which can correct the power factor (make pf =1). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

Add an inductor in parallel with load

$$
\mathrm{f}=60 \cdot \mathrm{~Hz} \quad \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=376.991 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

$$
\begin{array}{rll}
\mathrm{Q}=-398 \cdot \mathrm{VAR} & \text { so we need: } & \mathrm{Q}_{\mathrm{L}}:=-\mathrm{Q}
\end{array} \mathrm{Q}_{\mathrm{L}}=398 \cdot \mathrm{VAR} \quad=\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\mathrm{X}_{\mathrm{L}}}
$$

Ex. 4 For the 60 Hz load shown in the figure, the RMS ECE 3600 AC Power Examples, p. 3 voltmeter measures 120 V . The phasor diagram for the power is also shown. Find the following:
a) The complex power. $\mathbf{S}=$?
$\omega:=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$

$$
\begin{array}{lc}
\mathbf{P}:=300 \cdot \mathrm{~W} & \mathrm{Q}:=-150 \cdot \mathrm{VA} \\
\mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} & \mathbf{S}=300-150 \mathrm{j} \cdot \mathrm{VA}
\end{array}
$$

b) The apparent power. $|\mathbf{S}|=? \quad|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=335.4 \cdot \mathrm{VA}$
c) The power factor. $\mathrm{pf}=? \quad \mathrm{pf}:=\frac{\mathrm{P}}{|\mathbf{S}|} \quad \mathrm{pf}=0.894$
d) The item marked "WM" in the figure is a wattmeter, what does it read? (give a number)

$$
\mathrm{P}=300 \cdot \mathrm{~W}
$$

e) The item marked " A " in the figure is an RMS ammeter, what does it read? (give a number)

$$
\mathrm{I}:=\frac{|\mathbf{S}|}{\mathrm{V}_{\mathrm{s}}} \quad \mathrm{I}=2.795 \cdot \mathrm{~A} \quad \mathrm{I}=2.8 \cdot \mathrm{~A}
$$

f) The power factor is leading or lagging? leading (Q is negative)
g) The 3 components of the load are in a box which cannot be opened. Add another component to the circuit above which can correct the power factor (make $\mathrm{pf}=1$). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

$$
\begin{aligned}
& \text { Add an inductor in parallel with load } \\
& \mathrm{Q}=-150 \cdot \mathrm{VAR} \quad \text { need: } \quad \mathrm{Q}_{\mathrm{L}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{L}}=150 \cdot \mathrm{VAR} \quad=\frac{\mathrm{V}_{\mathrm{s}}{ }^{2}}{\omega \cdot \mathrm{~L}} \quad \mathrm{~L}:=\frac{\mathrm{V}_{\mathrm{s}}{ }^{2}}{\omega \cdot \mathrm{Q}_{\mathrm{L}}} \quad \mathrm{~L}=255 \cdot \mathrm{mH}
\end{aligned}
$$

Ex. 5 R, L, \& C together are the load in the circuit shown
The RMS voltmeter measures $120 \mathrm{~V} . \mathrm{V}_{\mathrm{s}}:=120 \cdot \mathrm{~V}$
The wattmeter measures $270 \mathrm{~W} . \quad \mathrm{P}:=270 \cdot \mathrm{~W}$
The RMS ammeter measures $3.75 \mathrm{~A} . \mathrm{I}:=3.75 \cdot \mathrm{~A}$

Find the following: Be sure to show the correct units for each value.
a) The value of the load resistor. $R_{L}=$?

$$
\mathrm{P}=\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\mathrm{R}_{\mathrm{L}}} \quad \mathrm{R}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\mathrm{P}} \quad \quad \mathrm{R}_{\mathrm{L}}=53.3 \cdot \Omega
$$

b) The magnitude of the impedance of the load inductor (reactance). $\left|\mathbf{Z}_{\mathbf{L}}\right|=X_{\mathrm{L}}=$?

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{R}}:=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{L}}} \quad \mathrm{I}_{\mathrm{R}}=2.25 \cdot \mathrm{~A} \quad \mathrm{I}_{\mathrm{L}}:=\sqrt{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{R}}^{2}} \quad \mathrm{I}_{\mathrm{L}}=3 \cdot \mathrm{~A} \quad \mathrm{X}:=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{L}}} \quad \mathrm{X}=40 \cdot \Omega \\
\mathrm{X}_{\mathrm{C}}:=-10 \cdot \Omega \quad \mathrm{X}_{\mathrm{L}}:=\mathrm{X}-\mathrm{X}_{\mathrm{C}} \quad \mathrm{X}_{\mathrm{L}}=50 \cdot \Omega
\end{array}
$$

c) The reactive power. $\mathrm{Q}=? \quad \mathrm{Q}:=\sqrt{\left(\mathrm{V}_{\mathrm{s}} \cdot \mathrm{I}\right)^{2}-\mathrm{P}^{2}} \quad \mathrm{Q}=360 \cdot \mathrm{VAR} \quad$ positive, because the load is primarily inductive
d) The power factor is leading or lagging? lagging (load is inductive, Q is positive)

ECE 3600 AC Power Examples, p. 4

e) The 3 components of the load are in a box which cannot be opened. Add another component to the circuit above which can correct the power factor (make pf $=1$). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

Add a capacitor in parallel with load

$$
\mathrm{f}=60 \cdot \mathrm{~Hz} \quad \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=376.991 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

$$
\begin{aligned}
& \mathrm{Q}=360 \cdot \mathrm{VAR} \quad \text { so we need: } \quad \mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{C}}=-360 \cdot \mathrm{VAR} \quad=-\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\frac{1}{\omega \cdot \mathrm{C}}}=-\omega \cdot \mathrm{C} \cdot \mathrm{~V}_{\mathrm{s}}^{2} \\
& \mathrm{C}:=\frac{\mathrm{Q}_{\mathrm{C}}}{-\omega^{2} \cdot \mathrm{~V}_{\mathrm{s}}^{2}} \quad \mathrm{C}=66.3 \cdot \mu \mathrm{~F}
\end{aligned}
$$

Ex. 6 An inductor is used to completely correct the power factor of a load.
Find the following:
a) The power consumed by the load. $P_{L}=$?
$\mathrm{I}_{\mathrm{L}}:=4 \cdot \mathrm{~A} \quad \omega=376.991 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$

$\mathrm{Q}_{\mathrm{L}}:=\frac{\left(\left|\mathbf{V}_{\mathbf{S}}\right|\right)^{2}}{\omega \cdot \mathrm{~L}}$
$\mathrm{Q}_{\mathrm{L}}=190.986 \cdot \mathrm{VAR}$
$\mathrm{Q}_{\text {load }}:=-\mathrm{Q}_{\mathrm{L}}$
$\mathrm{S}_{\mathrm{L}}:=\left|\mathbf{V}_{\mathbf{S}}\right| \cdot \mathrm{I}_{\mathrm{L}}$
$\mathrm{S}_{\mathrm{L}}=480 \cdot \mathrm{VA}$
$\mathrm{P}_{\mathrm{L}}:=\sqrt{\mathrm{S}_{\mathrm{L}}{ }^{2}-\mathrm{Q}_{\text {load }}{ }^{2}}$
$\mathrm{P}_{\mathrm{L}}=440.4 \cdot \mathrm{~W}$
b) The power supplied by the source. $\quad P_{S}=P_{L}=440 \cdot W$
c) The source current (magnitude and phase). $\quad \mathbf{I}_{\mathbf{S}}:=\frac{\mathrm{P}_{\mathrm{L}}}{\mathbf{V}_{\mathbf{S}}}$

$$
\mathbf{I}_{\mathbf{S}}=3.67 \cdot \mathrm{~A} \quad \underline{10^{\circ}}
$$ because the source sees a pf = 1

d) The load can be modeled as 2 parts in parallel. Draw the model and find the values of the parts.

$$
\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad \mathrm{R}_{\mathrm{L}}=32.7 \cdot \Omega, \begin{aligned}
& \mathrm{Q}_{\mathrm{C}}=\frac{\left(\left|\mathbf{V}_{\mathbf{S}}\right|\right)^{2}}{\mathrm{P}_{\mathrm{L}}}
\end{aligned}
$$

e) The inductor, L , is replaced with a 50 mH inductor.
i) The new source current $\left|\mathbf{I}_{\mathbf{S}}\right|$ is greater than that calculated in part c). <-- Answer
circle
one
ii) The new source current $\left|\mathbf{I}_{\mathbf{S}}\right|$ is the same as that calculated in part c).
iii) The new source current $\left|\mathbf{I}_{\mathbf{S}}\right|$ is less than that calculated in part c).

ECE 3600 AC Power Examples, p. 5

Ex. $7 \mathrm{C}, \mathrm{R}_{1}$, \& R_{2} together are the load (in dotted box). The reactive power used by the load is $\mathrm{Q}_{\text {load }}$: $=-600 \cdot$ VAR \quad Find:
a) The real power used by the load. $\mathrm{P}_{\text {load }}=$?

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}:=-10 \cdot \Omega \\
& \left|\mathbf{I}_{\mathbf{C}}\right|=\mathrm{I}_{\mathrm{C}}:=\sqrt{\frac{\mathrm{Q}_{\text {load }}}{\mathrm{X}_{\mathrm{C}}}} \quad \mathrm{I}_{\mathrm{C}}=7.746 \cdot \mathrm{~A} \\
& \mathrm{~V}_{\text {load }}:=\mathrm{I}_{\mathrm{C}} \cdot \sqrt{\mathrm{R}_{1}{ }^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}} \\
& \mathrm{P}_{\text {load }}:=\mathrm{I}_{\mathrm{C}}{ }^{2} \cdot \mathrm{R}_{1}+\frac{\mathrm{V}_{\text {load }}{ }^{2}}{\mathrm{R}_{2}}
\end{aligned}
$$

b) The apparent power of the load.
$|\mathbf{S}|=\mathrm{S}:=\sqrt{\mathrm{P}_{\text {load }}{ }^{2}+\mathrm{Q}_{\text {load }}{ }^{2}}$
$\mathrm{S}=1.505 \cdot \mathrm{kVA}$
c) The power factor of the load. $\quad \mathrm{pf}:=\frac{\mathrm{P}_{\text {load }}}{\mathrm{S}}$

$$
\mathrm{pf}=0.917
$$

d) This power factor is: i) leading
ii) lagging

Leading, capacitor
e) The voltage at the load (magnitude). $\quad \mathrm{V}_{\text {load }}=90.333 \cdot \mathrm{~V}$ found above
f) The magnitudes of the three currents.

$$
\begin{array}{ll}
\left|\mathbf{I}_{\mathbf{C}}\right|=\mathrm{I}_{\mathrm{C}}=7.746 \cdot \mathrm{~A} & \text { found above } \\
\left|\mathbf{I}_{\mathbf{R} 2}\right|=\mathrm{I}_{\mathrm{R} 2}=\frac{\mathrm{V}_{\text {load }}}{\mathrm{R}_{2}}=11.292 \cdot \mathrm{~A} & \\
\left|\mathbf{I}_{\mathbf{S}}\right|=\mathrm{I}_{\mathrm{S}}:=\frac{\mathrm{S}}{\mathrm{~V}_{\text {load }}} & \mathrm{I}_{\mathrm{S}}=16.658 \cdot \mathrm{~A}
\end{array}
$$

g) The source voltage (magnitude). $\mathrm{V}_{\mathrm{S}}=$?

$$
\begin{array}{ll}
\mathrm{P}_{\text {Line }}:=\mathrm{I}_{\mathrm{S}}{ }^{2} \cdot \mathrm{R}_{\text {line }} & \mathrm{P}_{\text {Line }}=111 \cdot \mathrm{~W} \\
\mathrm{Q}_{\text {Line }}:=\mathrm{I}_{\mathrm{S}}{ }^{2} \cdot \mathrm{X}_{\text {line }} \quad \mathrm{Q}_{\text {Line }}=555 \cdot \mathrm{VAR} \\
\left|\mathbf{S}_{\mathbf{S}}\right|=\mathrm{S}_{\mathrm{S}}:=\sqrt{\left(\mathrm{P}_{\text {load }}+\mathrm{P}_{\text {Line }}\right)^{2}+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\text {Line }}\right)^{2}} \quad \mathrm{~S}_{\mathrm{S}}=1.492 \cdot \mathrm{kVA} \\
\mathrm{~V}_{\mathrm{S}}:=\frac{\mathrm{S}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{S}}} \quad \quad \mathrm{~V}_{\mathrm{S}}=89.546 \cdot \mathrm{~V}
\end{array}
$$

h) Is there something weird about this voltage? If so, what? $\quad V_{S}$ is less than $V_{\text {Load }}$

Why? Because the Q of the line partially cancels the Q of the load
OR Partial resonance between the inductance in the line and the capacitance of the load.
i) The efficiency. $\eta=$?

When asked for efficiency, assume the power used by $\mathrm{R}_{\text {line }}$ is a loss and $\mathrm{P}_{\text {load }}$ is the output power.
$\eta=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}}=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {out }}+\mathrm{P}_{\text {loss }}}=\frac{\mathrm{P}_{\text {load }}}{\mathrm{P}_{\text {load }}+\mathrm{P}_{\text {Line }}}=92.56 . \%$

ECE 3600 AC Power Examples, p. 6

Ex. 8 In the circuit shown, the ideal voltmeter, V, reads 120 V and ideal ammeter, A , reads 5A.

$$
\mathrm{S}_{\text {load }}:=120 \cdot \mathrm{~V} \cdot 5 \cdot \mathrm{~A} \quad \mathrm{~S}_{\mathrm{load}}=600 \cdot \mathrm{VA}
$$

a) You add a capacitor, C, and the ammeter reading changes to 5.3 A . Find the following:

$$
\mathrm{P}_{\text {load }}=? \quad \mathrm{Q}_{\text {load }}=?
$$

I_{C} is NOT 0.3 A , That's subtracting magnitudes

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{load}}:=120 \cdot \mathrm{~V} \cdot 5 \cdot \mathrm{~A} \quad \mathrm{~S}_{\mathrm{load}}=600 \cdot \mathrm{VA}=\sqrt{\mathrm{P}_{\mathrm{load}}^{2}+\mathrm{Q}_{\mathrm{load}}{ }^{2}} \\
& \mathrm{OR} \quad(600 \cdot \mathrm{VA})^{2}=\mathrm{P}_{\mathrm{load}^{2}}{ }^{2}+\mathrm{Q}_{\mathrm{load}^{2}} \\
& \mathrm{P}_{\mathrm{load}}{ }^{2}=(600 \cdot \mathrm{VA})^{2}-\mathrm{Q}_{\mathrm{load}}{ }^{2} \\
& \mathrm{Q}_{\mathrm{C}}:=\frac{(120 \cdot \mathrm{~V})^{2}}{\left(-\frac{1}{\omega \cdot \mathrm{C}}\right)}=-(120 \cdot \mathrm{~V})^{2} \cdot \omega \cdot \mathrm{C} \quad \mathrm{Q}_{\mathrm{C}}=-434.294 \cdot \mathrm{VAR}
\end{aligned}
$$

With Capacitor:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{S}}:=120 \cdot \mathrm{~V} \cdot 5.3 \cdot \mathrm{~A} \quad \mathrm{~S}_{\mathrm{S}}=636 \cdot \mathrm{VA}=\sqrt{\mathrm{P}_{\text {load }}{ }^{2}+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}\right)^{2}} \\
& \text { OR } \quad(636 \cdot V A)^{2}=\mathrm{P}_{\text {load }}{ }^{2}+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}\right)^{2} \\
& \text { Substitute in }(636 \cdot V A)^{2}=\left[(600 \cdot V A)^{2}-\mathrm{Q}_{\text {load }^{2}}{ }^{2}\right]+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}\right)^{2} \\
& =\left[(600 \cdot \mathrm{VA})^{2}-\mathrm{Q}_{\text {load }}{ }^{2}\right]+\left(\mathrm{Q}_{\text {load }}{ }^{2}+2 \cdot \mathrm{Q}_{\mathrm{C}} \cdot \mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}{ }^{2}\right) \\
& =(600 \cdot \mathrm{VA})^{2}+2 \cdot \mathrm{Q}_{\mathrm{C}} \cdot \mathrm{Q}_{\mathrm{load}}+\mathrm{Q}_{\mathrm{C}}{ }^{2} \\
& \mathrm{Q}_{\text {load }}:=\frac{(636 \cdot \mathrm{VA})^{2}-(600 \cdot \mathrm{VA})^{2}-\mathrm{Q}_{\mathrm{C}}{ }^{2}}{2 \cdot \mathrm{Q}_{\mathrm{C}}} \quad \mathrm{Q}_{\text {load }}=165.919 \cdot \mathrm{VAR}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\text {load }}=576.603 \cdot \mathrm{~W}
\end{aligned}
$$

Double Check: $\quad \mathrm{S}_{\mathrm{S}}=\sqrt{\mathrm{P}_{\text {load }}{ }^{2}+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}\right)^{2}}=636 \cdot \mathrm{VA}$

