
$\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})$

Couldn't we define an "effective" voltage that would allow us to use the same relationships for AC power as used for DC power?

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ave}}=\frac{\left(\frac{\mathrm{V}_{\mathrm{p}}^{2}}{\mathrm{R}}\right)^{2}}{2}=\frac{\left(\frac{\mathrm{V}_{\mathrm{p}}^{2}}{2}\right)^{\mathrm{R}}}{}=\frac{\left(\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{2}}\right)^{2}}{\mathrm{R}} \\
& \mathrm{~V}_{\mathrm{eff}}=\sqrt{\left(\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{2}}\right)^{2}}=\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{2}}=\mathrm{V}_{\mathrm{rms}}=\sqrt{\left.\frac{1}{\mathrm{~T}} \cdot\right|_{0} ^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}} \\
& \text { Root Square }
\end{aligned}
$$

RMS Root of the Mean of the Square

Use RMS in power calculations

Sinusoids

$$
\begin{aligned}
\mathrm{V}_{\mathrm{rms}} & =\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right)^{2} \mathrm{dt}}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} \mathrm{~V}_{\mathrm{p}}^{2} \cdot\left(\frac{1}{2}+\frac{1}{2} \cdot \cos (2 \cdot \omega \cdot \mathrm{t})\right) \mathrm{dt}} \\
& =\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{2}} \cdot \sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(1) \mathrm{dt}+\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} \cos (2 \cdot \omega \cdot \mathrm{t}) \mathrm{dt} \quad=\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{2}} \cdot \sqrt{1+0}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}=60 \cdot \mathrm{~Hz} \\
& \omega=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \\
& \mathrm{~T}=16.67 \cdot \mathrm{~ms}
\end{aligned}
$$

Ground, G, green

ECE 3600 Lecture 3 notes p2
$\mathrm{V}_{\mathrm{rms}}:=120 \cdot \mathrm{~V}$
$\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{rms}} \cdot \sqrt{2}=170 \cdot \mathrm{~V}$

What about other wave shapes??

Works for all types of triangular and sawtooth waveforms

How about AC + DC?

$$
\begin{aligned}
\mathrm{V}_{\mathrm{rms}} & =\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}} \\
& =\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{V}_{\mathrm{DC}}\right)^{2} \mathrm{dt}}
\end{aligned}
$$

$$
=\sqrt{\mathrm{T}} \cdot \int_{0}^{\mathrm{T}}\left[\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right)^{2}+2 \cdot\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right) \cdot \mathrm{V}_{\mathrm{DC}}+\mathrm{V}_{\mathrm{DC}}{ }^{2}\right] \mathrm{dt}
$$

$$
=\int^{\frac{1}{\mathrm{~T}}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right)^{2} \mathrm{dt}+\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} 2 \cdot\left(\mathrm{~V}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t})\right) \cdot \mathrm{V}_{\mathrm{DC}} \mathrm{dt}+\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}} \mathrm{~V}_{\mathrm{DC}}{ }^{2} \mathrm{dt}
$$

-- zero over one period --

$$
=\sqrt{\mathrm{V}_{\mathrm{rmsAC}}}{ }^{2}+0+\mathrm{V}_{\mathrm{DC}}^{2} \quad=\sqrt{\mathrm{V}_{\mathrm{rmsAC}}}{ }^{2}+\mathrm{V}_{\mathrm{DC}}{ }^{2}
$$

For any sum of waveforms or harmonics:

$$
\mathrm{V}_{\mathrm{rms}}=\sqrt{\mathrm{V}_{\mathrm{rms} 1}{ }^{2}+\mathrm{V}_{\mathrm{rms}} 2^{2}+\mathrm{V}_{\mathrm{rms} 3}{ }^{2}+\mathrm{V}_{\mathrm{rms} 3}{ }^{2}} \ldots \mathrm{etc}
$$

Some waveforms don't fall into these forms, then you have to perform the math from scratch
For waveform shown
The average $\mathrm{DC}\left(\mathrm{V}_{\mathrm{DC}}\right)$ value

$$
\frac{2 \cdot \mathrm{~V} \cdot(4 \cdot \mathrm{~ms})+(-5 \cdot \mathrm{~V}) \cdot(2 \cdot \mathrm{~ms})}{6 \cdot \mathrm{~ms}}=-0.333 \cdot \mathrm{~V}
$$

The RMS (effective) value

OR...
OR...
$\mathrm{V}_{\text {RMS }}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}}$

$$
=\sqrt{\frac{1}{6 \cdot \mathrm{~ms}} \cdot\left[\int_{0 \cdot \mathrm{~ms}}^{4 \cdot \mathrm{~ms}}(2 \cdot \mathrm{~V})^{2} \mathrm{dt}+\int_{4 \cdot \mathrm{~ms}}^{6 \cdot \mathrm{~ms}}(-5 \cdot \mathrm{~V})^{2} \mathrm{dt}\right]}=\sqrt{\frac{1}{6 \cdot \mathrm{~ms}} \cdot\left[4 \cdot \mathrm{~ms} \cdot(2 \cdot \mathrm{~V})^{2}+2 \cdot \mathrm{~ms} \cdot(-5 \cdot \mathrm{~V})^{2}\right]}=3.32 \cdot \mathrm{~V}
$$

The voltage is hooked to a resistor, as shown, for 6 seconds.
The energy is transferred to the resistor during that 6 seconds:

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{RMS}}{ }^{2}}{\mathrm{R}_{\mathrm{L}}} & \mathrm{P}_{\mathrm{L}}=0.22 \cdot \mathrm{~W} \\
\mathrm{~W}_{\mathrm{L}}:=\mathrm{P}_{\mathrm{L}} \cdot 6 \cdot \sec & \mathrm{~W}_{\mathrm{L}}=1.32 \cdot \text { joule } \quad \text { All converted to heat }
\end{array}
$$

Use RMS in power calculations

$$
P=I_{R r m s}{ }^{2} \cdot R=\frac{V_{R r m s}{ }^{2}}{R} \quad \text { for Resistors ONLY!! }
$$

Capacitors and Inductors

Average power is ZERO $\quad \mathrm{P}=0$

Average power is ZERO $\quad \mathrm{P}=0$
Capacitors and Inductors DO NOT dissipate (real) average power.

Reactive power is negative

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{C}} & =-\mathrm{I}_{\mathrm{Crms}} \cdot \mathrm{~V}_{\mathrm{Crms}} \\
& =-\mathrm{I} \mathrm{Crms} \cdot \frac{1}{\omega \cdot \mathrm{C}}=-\mathrm{V}_{\mathrm{Crms}}{ }^{2} \cdot \omega \cdot \mathrm{C}
\end{aligned}
$$

Reactive power is positive

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{Lrms}} \cdot \mathrm{~V}_{\text {Lrms }} \\
& =\mathrm{I}_{\mathrm{Lrms}}{ }^{2} \cdot \omega \cdot \mathrm{~L}=\frac{\mathrm{V}_{\mathrm{Lrms}}{ }^{2}}{\omega \mathrm{~L}}
\end{aligned}
$$

If current and voltage are not in phase, only the in-phase part of the current matters for the power-- DOT PRODUCT

"Lagging" power
Inductor dominates

"Leading" Power
Capacitor dominates

All voltages and currents shown are RMS

Real Power

$$
\mathrm{P}=\mathrm{V} \cdot \mathrm{I} \cdot \cos (\theta) \quad=\mathrm{I}^{2} \cdot|\mathbf{Z}| \cdot \cos (\theta) \quad=\frac{\mathrm{V}^{2}}{|\mathbf{Z}|} \cdot \cos (\theta)
$$

$\mathrm{P}=$ "Real" Power (average) $=\mathrm{V} \cdot \mathrm{I} \cdot \mathrm{pf}=\mathrm{I}^{2} \cdot|\mathbf{Z}| \cdot \mathrm{pf}=\frac{\mathrm{V}^{2}}{|\mathbf{Z}|} \cdot \mathrm{pf}$
otherwise....

Reactive Power
$\mathrm{Q}=$ Reactive "power" $=\mathrm{V} \cdot \mathrm{I} \cdot \sin (\theta)$
otherwise....

Complex and Apparent Power

$$
\mathbf{S}=\text { Complex "power" }=\mathrm{P}+\mathrm{jQ}=\mathrm{VI} \underline{\theta} \underline{\theta}=\mathbf{V} \cdot \overline{\mathrm{I}}^{\text {complex conjugate }}=\mathrm{I}^{2} \cdot \mathbf{Z}
$$

NOT V.I NOR $\frac{v^{2}}{\mathrm{z}}$
$\mathrm{S}=$ Apparent "power" $=|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=\mathrm{V} \cdot \mathrm{I}$
units: VA, kVA, etc. "volt-amp"
units: VA, kVA, etc. "volt-amp"

Power factor

$\mathrm{pf}=\cos (\theta)=$ power factor (sometimes expressed in \%) $0 \leq \mathrm{pf} \leq 1$
θ is the phase angle between the voltage and the current or the phase angle of the impedance. $\theta=\theta_{\mathrm{Z}}$
$\theta<0$ Load is "Capacitive", power factor is "leading". This condition is very rare
$\theta>0$ Load is "Inductive", power factor is "lagging". This condition is so common you can assume any power factor given is lagging unless specified otherwise. Transformers and motors make most loads inductive.

Industrial users are charged for the reactive power that they use, so for them, power factor < 1 is a bad thing.
Power factor < 1 is also bad for the power company. To deliver the same power to the load, they have more line current (and thus more line losses).

Power factors are "corrected" by adding capacitors (or capacitve loads) in parallel with the inductive loads which cause the problems. (In the rare case that the load is capacitive, the pf would be corrected by an inductor.)

Ex. 1 Find the DC and RMS of the following waveform

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DC}}:=\frac{14 \cdot \mathrm{~V}+-6 \cdot \mathrm{~V}}{2} \quad \mathrm{~V}_{\mathrm{DC}}=4 \cdot \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{pp}}:=14 \cdot \mathrm{~V}--6 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{pp}}=20 \cdot \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{RMS}}:=\sqrt{\left(\frac{\mathrm{V}_{\mathrm{pp}}}{2 \cdot \sqrt{2})^{2}+\mathrm{V}_{\mathrm{DC}}^{2}}\right.} \\
& \mathrm{V}_{\mathrm{RMS}}=8.12 \cdot \mathrm{~V}
\end{aligned}
$$

Ex. 2 Find the DC, rectified average and RMS of the following waveform

$\mathrm{V}_{\mathrm{DC}}=\frac{0 \cdot \mathrm{~V} \cdot(1 \cdot \mathrm{~ms})+5 \cdot \mathrm{~V} \cdot(1 \cdot \mathrm{~ms})+(-4 \cdot \mathrm{~V}) \cdot(2 \cdot \mathrm{~ms})}{4 \cdot \mathrm{~ms}}=-0.75 \cdot \mathrm{~V}$
$\mathrm{V}_{\mathrm{RA}}=\frac{0 \cdot \mathrm{~V} \cdot(1 \cdot \mathrm{~ms})+5 \cdot \mathrm{~V} \cdot(1 \cdot \mathrm{~ms})+|-4 \cdot \mathrm{~V}| \cdot(2 \cdot \mathrm{~ms})}{4 \cdot \mathrm{~ms}}=3.25 \cdot \mathrm{~V}$
Rectified Average

$$
\mathrm{V}_{\text {RMS }}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}(\mathrm{v}(\mathrm{t}))^{2} \mathrm{dt}} \text { Square }
$$

Ex. 1 R \& L together are the load. Find the real power P , the reactive power Q , the complex power \mathbf{S}, the apparent power $|\mathbf{S}|$, \& the power factor pf. Draw phasor diagram for the power.

$\mathrm{L}:=25 \cdot \mathrm{mH}$

$$
\mathbf{Z}:=\frac{1}{\left(\frac{1}{R}+\frac{1}{j \cdot \omega \cdot L}\right)}=\frac{1}{0.1458 \cdot \frac{1}{\Omega} \cdot \mathrm{e}^{-\mathrm{j} \cdot 46.7 \cdot \mathrm{deg}}}
$$

$\mathbf{Z}=4.704+4.991 \mathrm{j} \cdot \Omega \quad|\mathbf{Z}|=6.859 \cdot \Omega$
$\theta:=\arg (\mathbf{Z})$
$\theta=46.7 \cdot \operatorname{deg}$
$\mathrm{pf}:=\cos (\theta)$
$\mathrm{pf}=0.686$
$\mathbf{I}:=\frac{\mathbf{V}_{\text {in }}}{\mathbf{Z}}$
$\mathbf{I}=11-11.671 \mathrm{j} \cdot \mathrm{A}$
$|\mathbf{I}|=16.038 \cdot \mathrm{~A}$
$\arg (\mathbf{I})=-46.7 \cdot \operatorname{deg}$
$\mathrm{P}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \mathrm{pf} \quad \mathrm{P}=1.21 \cdot \mathrm{~kW}$
$\mathrm{Q}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \sin (\theta)$
$\mathrm{Q}=1.284 \cdot \mathrm{kVAR}$
OR... $\quad \mathrm{Q}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \sqrt{1^{2}-\mathrm{pf}^{2}}$
$\mathrm{Q}=1.284 \cdot \mathrm{kVAR}$
$\mathbf{S}:=\mathbf{V}_{\mathbf{i n}} \cdot \overline{\mathbf{I}} \quad$ OR.. $\quad \mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} \quad \mathbf{S}=1.21+1.284 \mathrm{j} \cdot \mathrm{kVA}$
$S:=\sqrt{\operatorname{Re}(\mathbf{S})^{2}+\operatorname{Im}(\mathbf{S})^{2}}=|\mathbf{S}|=1.764 \cdot \mathrm{kVA}$
$\operatorname{atan}\left(\frac{\operatorname{Im}(\mathbf{S})}{\operatorname{Re}(\mathbf{S})}\right)=\begin{gathered}46.696 \cdot \operatorname{deg} \\ \text { same as } \theta\end{gathered} \quad \mathbf{S}=1.764 \mathrm{kVA} \underline{/ 46.7^{\circ}}$
OR, since we know that the voltage across each element of the load is $\mathrm{V}_{\text {in }} \ldots$
Real power is dissipated only by resistors

$$
\begin{array}{ll}
\mathrm{P}:=\frac{\left(\left|\mathbf{V}_{\mathbf{i n}}\right|\right)^{2}}{\mathrm{R}} \quad \mathrm{P}=1.21 \cdot \mathrm{~kW} & \mathrm{Q}:=\frac{\left(\left|\mathbf{V}_{\mathbf{i n}}\right|\right)^{2}}{\omega \cdot \mathrm{~L}} \quad \mathrm{Q}=1.284 \cdot \mathrm{kVAR} \\
\mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} & \mathrm{Pf}=\frac{\mathrm{P}}{|\mathbf{S}|}=0.686 \\
\mathrm{~S}=|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=1.764 \cdot \mathrm{kVA} &
\end{array}
$$

What value of C in parallel with $\mathrm{R} \& \mathrm{~L}$ would make $\mathrm{pf}=1 \quad(\mathrm{Q}=0) ?$

$$
\begin{aligned}
& \operatorname{Im}(\mathbf{I})=-11.671 \cdot \mathrm{~A} \quad \mathrm{X}_{\mathrm{C}}:=\frac{\mathbf{V}_{\mathbf{i n}}}{\operatorname{Im}(\mathbf{I})} \quad \mathrm{X}_{\mathrm{C}}=-9.425 \cdot \Omega=\frac{-1}{\omega \cdot \mathrm{C}} \\
& \frac{1}{\left|\mathrm{X}_{\mathrm{C}}\right| \cdot \omega}=281 \cdot \mu \mathrm{~F} \quad \text { OR.. } \quad \omega=\frac{1}{\sqrt{\mathrm{~L} \cdot \mathrm{C}}} \quad \mathrm{C}:=\frac{1}{\mathrm{~L} \cdot \omega^{2}} \quad \mathrm{C}=281 \cdot \mu \mathrm{~F}
\end{aligned}
$$

Ex. 2 R \& L together are the load. Find the real power P, the reactive power Q , the complex power \mathbf{S}, the apparent power $|\mathbf{S}|$, \& the power factor pf. Draw phasor diagram for the power.

$\mathrm{R}:=10 \cdot \Omega$
$\mathbf{Z}:=\mathrm{R}+\mathrm{j} \cdot \omega \cdot \mathrm{L}$
load $\quad \mathbf{Z}=10+9.425 j$
$\cdot \Omega \quad|\mathbf{Z}|=13.742 \cdot \Omega$
$\mathrm{L}:=25 \cdot \mathrm{mH} \quad \theta:=\arg (\mathbf{Z}) \quad \theta=43.304 \cdot \mathrm{deg} \quad$ pf $:=\cos (\theta) \quad \mathrm{pf}=0.728$
$\mathbf{I}:=\frac{\mathbf{V}_{\text {in }}}{\mathbf{Z}}$
$\mathbf{I}=5.825-5.49 \mathrm{j} \cdot \mathrm{A}$
$|\mathbf{I}|=8.005 \cdot \mathrm{~A}$
$\arg (\mathbf{I})=-43.304 \cdot \operatorname{deg}$
$\mathbf{P}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \mathrm{pf}$
$\mathrm{P}=0.641 \cdot \mathrm{~kW}$
$\mathrm{Q}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \sin (\theta)$
$\mathrm{Q}=0.604 \cdot \mathrm{kVAR}$
$\mathbf{S}:=\mathbf{V}_{\mathbf{i n}} \cdot \overline{\mathbf{I}}$
$|\mathbf{S}|=0.881 \cdot \mathrm{kVA}$
$\mathbf{S}=0.641+0.604 \mathrm{j} \cdot \mathrm{kVA}$
$|\mathbf{S}| \arg (\mathbf{S})=43.304 \cdot \mathrm{deg}$
$\mathbf{S}=881 \mathrm{VA} / 43.3^{\circ}$
ECE 3600 AC Power Examples, p. 1

ECE 3600 AC Power Examples, p. 2

OR, if we first find the magnitude of the current which flows through each element of the load...

$$
\begin{aligned}
& |\mathbf{I}|=\frac{\mathbf{V}_{\text {in }}}{\sqrt{\mathrm{R}^{2}+(\omega \cdot \mathrm{L})^{2}}}=8.005 \cdot \mathrm{~A} \\
& \mathbf{P}:=(|\mathbf{I}|)^{2} \cdot \mathrm{R} \\
& \mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} \quad \mathrm{P}=0.641 \cdot \mathrm{~kW} \quad \mathrm{Q}:=(|\mathbf{I}|)^{2} \cdot(\omega \cdot \mathrm{~L}) \quad \mathrm{Q}=0.604 \cdot \mathrm{kVAR} \\
&
\end{aligned}
$$

What value of C in parallel with $R \& L$ would make $p f=1 \quad(Q=0) ?$

$$
\begin{aligned}
& \text { What value of } \mathrm{C} \text { in parallel with } \mathrm{R} \& \mathrm{~L} \text { would make } \mathrm{pf}=1 \quad(\mathrm{Q}=0) ? \\
& \mathrm{Q}=603.9 \cdot \mathrm{VAR} \quad \text { so we need: } \quad \mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{C}}=-603.9 \cdot \mathrm{VAR}=\frac{\mathrm{V}_{\mathrm{in}}{ }^{2}}{\mathrm{X}_{\mathrm{C}}}
\end{aligned}
$$

$$
\mathrm{X}_{\mathrm{C}}:=\frac{\mathbf{V}_{\text {in }}^{2}}{\mathrm{Q}_{\mathrm{C}}} \quad \mathrm{X}_{\mathrm{C}}=-20.035 \cdot \Omega \quad=\frac{-1}{\omega \cdot \mathrm{C}} \quad \mathrm{C}:=\frac{1}{\left|\mathrm{X}_{\mathrm{C}}\right| \cdot \omega} \quad \mathrm{C}=132 \cdot \mu \mathrm{~F}
$$

Check: $\frac{1}{1}=18.883 \cdot \Omega \quad$ No j term, so $\theta=0^{\circ}$

$$
\frac{1}{R+j \cdot \omega \cdot L}+j \cdot \omega \cdot C
$$

Ex. 3 R, \& C together are the load in the circuit shown. The RMS voltmeter measures 240 V , the RMS ammeter measures 3 A , and the wattmeter measures 600 W . Find the following: Be sure to show the correct units for each value.
a) The value of the load resistor. $R_{L}=$?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{I}^{2} \cdot \mathrm{R} \mathrm{~L} \\
& \mathrm{R}_{\mathrm{L}}:=\frac{\mathrm{P}}{\mathrm{I}^{2}} \quad \mathrm{R}_{\mathrm{L}}=66.7 \cdot \Omega
\end{aligned}
$$

b) The apparent power. $|\mathbf{S}|=$?

$$
S:=V_{\mathrm{s}} \cdot \mathrm{I}
$$

$$
\mathrm{S}=720 \cdot \mathrm{VA}
$$

c) The reactive power. $\mathrm{Q}=$?

$$
Q:=-\sqrt{S^{2}-P^{2}}
$$

$$
\mathrm{Q}=-398 \cdot \mathrm{VAR}
$$

d) The complex power. $\mathbf{S}=$?
$\mathbf{S}:=\mathbf{P}+\mathrm{j} \cdot \mathrm{Q}$
$\mathbf{S}=600-398 \mathrm{i} \cdot \mathrm{VA}$
e) The power factor. $\mathrm{pf}=$? $\mathrm{pf}:=\frac{\mathrm{P}}{\mathrm{V}_{\mathrm{s}} \cdot \mathrm{I}}$
$\mathrm{pf}=0.833$
f) The power factor is leading or lagging?
leading (load is capacitive, Q is negative)
g) The two components of the load are in a box which cannot be opened. Add (draw it) another component to the circuit above which can correct the power factor (make pf = 1). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

Add an inductor in parallel with load

$$
\mathrm{f}=60 \cdot \mathrm{~Hz} \quad \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=376.991 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

$$
\begin{array}{rll}
\mathrm{Q}=-398 \cdot \mathrm{VAR} & \text { so we need: } \quad \mathrm{Q}_{\mathrm{L}}:=-\mathrm{Q} & \mathrm{Q}_{\mathrm{L}}=398 \cdot \mathrm{VAR} \\
\mathrm{X}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{s}}{ }^{2}}{\mathrm{Q}_{\mathrm{L}}} & \mathrm{X}_{\mathrm{L}}=144.725 \cdot \Omega=\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\mathrm{X}_{\mathrm{L}}} \\
& & \mathrm{~L}:=\frac{\left|\mathrm{X}_{\mathrm{L}}\right|}{\omega}
\end{array}
$$

Ex. 4 For the 60 Hz load shown in the figure, the RMS voltmeter measures 120 V . The phasor diagram for the power is also shown. Find the following:
a) The complex power. $\mathbf{S}=$?

$$
\begin{array}{lc}
\mathbf{P}:=300 \cdot \mathrm{~W} & \mathrm{Q}:=-150 \cdot \mathrm{VA} \\
\mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} & \mathbf{S}=300-150 \mathrm{j} \cdot \mathrm{VA}
\end{array}
$$

$\omega:=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$

b) The apparent power. $|\mathbf{S}|=? \quad|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}=335.4 \cdot \mathrm{VA}}$
c) The power factor. $\mathrm{pf}=$? $\quad \mathrm{pf}:=\frac{\mathrm{P}}{|\mathbf{S}|} \quad \mathrm{pf}=0.894$
d) The item marked "WM" in the figure is a wattmeter, what does it read? (give a number)

$$
\mathrm{P}=300 \cdot \mathrm{~W}
$$

e) The item marked "A" in the figure is an RMS ammeter, what does it read? (give a number)

$$
\mathrm{I}:=\frac{|\mathbf{S}|}{\mathrm{V}_{\mathrm{s}}} \quad \mathrm{I}=2.795 \cdot \mathrm{~A} \quad \mathrm{I}=2.8 \cdot \mathrm{~A}
$$

f) The power factor is leading or lagging? leading (Q is negative)
g) The 3 components of the load are in a box which cannot be opened. Add another component to the circuit above which can correct the power factor (make $\mathrm{pf}=1$). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

$$
\begin{aligned}
& \text { Add an inductor in parallel with load } \\
& \mathrm{Q}=-150 \cdot \mathrm{VAR} \quad \text { need: } \quad \mathrm{Q}_{\mathrm{L}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{L}}=150 \cdot \mathrm{VAR} \quad=\frac{\mathrm{V}_{\mathrm{S}}{ }^{2}}{\omega \mathrm{~L}} \quad \mathrm{~L}:=\frac{\mathrm{V}_{\mathrm{S}}{ }^{2}}{\omega \cdot \mathrm{Q}_{\mathrm{L}}} \quad \mathrm{~L}=255 \cdot \mathrm{mH}
\end{aligned}
$$

Ex. $5 \mathrm{R}, \mathrm{L}, \& \mathrm{C}$ together are the load in the circuit shown
The RMS voltmeter measures $120 \mathrm{~V} . \quad \mathrm{V}_{\mathrm{S}}:=120 \cdot \mathrm{~V}$
The wattmeter measures $270 \mathrm{~W} . \quad \mathrm{P}:=270 \cdot \mathrm{~W}$
The RMS ammeter measures $3.75 \mathrm{~A} . \mathrm{I}:=3.75 \cdot \mathrm{~A}$

Find the following: Be sure to show the correct units for each value.
a) The value of the load resistor. $R_{L}=$?

$$
\mathrm{P}=\frac{\mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{R}_{\mathrm{L}}} \quad \mathrm{R}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\mathrm{P}} \quad \quad \mathrm{R}_{\mathrm{L}}=53.3 \cdot \Omega
$$

b) The magnitude of the impedance of the load inductor (reactance). $\left|\mathbf{Z}_{\mathrm{L}}\right|=\mathrm{X}_{\mathrm{L}}=$?

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{R}}:=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{L}}} \quad \mathrm{I}_{\mathrm{R}}=2.25 \cdot \mathrm{~A} \quad \mathrm{I}_{\mathrm{L}}:=\sqrt{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{R}}{ }^{2}} \quad \mathrm{I}_{\mathrm{L}}=3 \cdot \mathrm{~A} \quad \mathrm{X}:=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{L}}} \quad \mathrm{X}=40 \cdot \Omega \\
\mathrm{X}_{\mathrm{C}}:=-10 \cdot \Omega \quad \mathrm{X}_{\mathrm{L}}:=\mathrm{X}-\mathrm{X}_{\mathrm{C}} \quad \mathrm{X}_{\mathrm{L}}=50 \cdot \Omega
\end{array}
$$

c) The reactive power. $\mathrm{Q}=? \quad \mathrm{Q}:=\sqrt{\left(\mathrm{V}_{\mathrm{S}} \cdot \mathrm{I}\right)^{2}-\mathrm{P}^{2}} \quad \mathrm{Q}=360 \cdot \mathrm{VAR} \quad$ positive, because the load is primarily inductive
d) The power factor is leading or lagging?
lagging (load is inductive, Q is positive)

ECE 3600 AC Power Examples, p. 4

e) The 3 components of the load are in a box which cannot be opened. Add another component to the circuit above which can correct the power factor (make pf $=1$). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

$$
\text { Add a capacitor in parallel with load } \quad \mathrm{f}=60 \cdot \mathrm{~Hz} \quad \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=376.991 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

$$
\begin{aligned}
\mathrm{Q}=360 \cdot \mathrm{VAR} \quad \text { so we need: } \quad \mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{C}}=-360 \cdot \mathrm{VAR} \quad=-\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\frac{1}{\omega \cdot \mathrm{C}}}=-\omega \cdot \mathrm{C} \cdot \mathrm{~V}_{\mathrm{s}}^{2} \\
\mathrm{C}:=\frac{\mathrm{Q}_{\mathrm{C}}}{-\omega \cdot \mathrm{V}_{\mathrm{s}}^{2}} \quad \mathrm{C}=66.3 \cdot \mu \mathrm{~F}
\end{aligned}
$$

Ex. 6 An inductor is used to completely correct the power factor of a load.
Find the following:
a) The power consumed by the load. $\mathrm{P}_{\mathrm{L}}=$?

$\mathbf{V}_{\mathbf{S}}:=$	
$\mathrm{I}_{\mathrm{L}}:=4 \cdot \mathrm{~A} \quad \omega=376.991 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \quad$	$120 \cdot \mathrm{~V}$ $60 \cdot \mathrm{~Hz}$

$\mathrm{Q}_{\mathrm{L}}:=\frac{\left(\left|\mathbf{V}_{\mathbf{S}}\right|\right)^{2}}{\omega \cdot \mathrm{~L}}$
$\mathrm{Q}_{\mathrm{L}}=190.986 \cdot \mathrm{VAR}$
$\mathrm{Q}_{\text {load }}:=-\mathrm{Q}_{\mathrm{L}}$
$\mathrm{S}_{\mathrm{L}}:=\left|\mathbf{V}_{\mathbf{S}}\right| \cdot \mathrm{I}_{\mathrm{L}}$
$\mathrm{S}_{\mathrm{L}}=480 \cdot \mathrm{VA}$
$P_{L}:=\sqrt{S_{L}{ }^{2}-Q_{\text {load }}{ }^{2}}$
$\mathrm{P}_{\mathrm{L}}=440.4 \cdot \mathrm{~W}$
b) The power supplied by the source. $\quad \mathrm{P}_{\mathrm{S}}=\mathrm{P}_{\mathrm{L}}=440 \cdot \mathrm{~W}$
c) The source current (magnitude and phase). $\quad \mathbf{I}_{\mathbf{S}}:=\frac{\mathrm{P}_{\mathrm{L}}}{\mathbf{V}_{\mathbf{S}}}$

$$
\mathbf{I}_{\mathbf{S}}=3.67 \cdot \mathrm{~A} \quad \underline{0}^{\circ}
$$ because the source sees a pf = 1

d) The load can be modeled as 2 parts in parallel. Draw the model and find the values of the parts.

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \\
& \mathrm{R}_{\mathrm{L}}:=\frac{\left(\left|\mathbf{V}_{\mathbf{S}}\right|\right)^{2}}{\mathrm{P}_{\mathrm{L}}}
\end{aligned}
$$

$R_{L}=32.7 \cdot \Omega$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{C}}=\mathrm{V}^{2} \cdot(\omega \cdot \mathrm{C}) \\
& \mathrm{C}_{\mathrm{L}}:=\frac{-\mathrm{Q}_{\mathrm{load}}}{\omega \cdot\left(\left|\mathbf{V}_{\mathbf{S}}\right|\right)^{2}} \\
& \mathrm{C}_{\mathrm{L}}=35.181 \cdot \mu \mathrm{~F}
\end{aligned}
$$

e) The inductor, L , is replaced with a 50 mH inductor.
i) The new source current $\left|\mathbf{I}_{\mathbf{S}}\right|$ is greater than that calculated in part c). <-- Answer
circle
ii) The new source current $\left|\mathbf{I}_{\mathbf{S}}\right|$ is the same as that calculated in part c).
iii) The new source current $\left|\mathbf{I}_{\mathbf{S}}\right|$ is less than that calculated in part c).

ECE 3600 AC Power Examples, p. 5

Ex. $7 \mathrm{C}, \mathrm{R}_{1}$, \& R_{2} together are the load (in dotted box). The reactive power used by the load is $\mathrm{Q}_{\text {load }}:=-600 \cdot$ VAR \quad Find:
a) The real power used by the load. $\mathrm{P}_{\text {load }}=$?

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}:=-10 \cdot \Omega \\
& \left|\mathbf{I}_{\mathbf{C}}\right|=\mathrm{I}_{\mathrm{C}}:=\sqrt{\frac{\mathrm{Q}_{\text {load }}}{\mathrm{X}_{\mathrm{C}}}} \quad \mathrm{I}_{\mathrm{C}}=7.746 \cdot \mathrm{~A} \\
& \mathrm{~V}_{\text {load }}:=\mathrm{I} \mathrm{C} \cdot \sqrt{\mathrm{R}_{1}{ }^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}} \\
& \mathrm{P}_{\text {load }}:=\mathrm{I}_{\mathrm{C}}{ }^{2} \cdot \mathrm{R}_{1}+\frac{\mathrm{V}_{\text {load }}{ }^{2}}{\mathrm{R}_{2}}
\end{aligned}
$$

b) The apparent power of the load.
$|\mathbf{S}|=\mathrm{S}:=\sqrt{\mathrm{P}_{\text {load }}{ }^{2}+\mathrm{Q}_{\text {load }}{ }^{2}}$
$\mathrm{S}=1.505 \cdot \mathrm{kVA}$
c) The power factor of the load. $\quad \mathrm{pf}:=\frac{\mathrm{P}_{\text {load }}}{\mathrm{S}}$

$$
\mathrm{pf}=0.917
$$

d) This power factor is: i) leading
ii) lagging

Leading, capacitor
e) The voltage at the load (magnitude). $\quad \mathrm{V}_{\text {load }}=90.333 \cdot \mathrm{~V}$ found above
f) The magnitudes of the three currents. $\quad\left|\mathbf{I}_{\mathbf{C}}\right|=$? $\quad\left|\mathbf{I}_{\mathbf{R 2}}\right|=$? $\quad\left|\mathbf{I}_{\mathbf{S}}\right|=$?

$$
\begin{array}{ll}
\left|\mathbf{I}_{\mathbf{C}}\right|=\mathrm{I}_{\mathrm{C}}=7.746 \cdot \mathrm{~A} & \text { found above } \\
\left|\mathbf{I}_{\mathbf{R} 2}\right|=\mathrm{I}_{\mathrm{R} 2}=\frac{\mathrm{V}_{\text {load }}}{\mathrm{R}_{2}}=11.292 \cdot \mathrm{~A} & \\
\left|\mathbf{I}_{\mathbf{S}}\right|=\mathrm{I}_{\mathrm{S}}:=\frac{\mathrm{S}}{\mathrm{~V}_{\text {load }}} & \mathrm{I}_{\mathrm{S}}=16.658 \cdot \mathrm{~A}
\end{array}
$$

g) The source voltage (magnitude). $\mathrm{V}_{\mathrm{S}}=$?

$$
\begin{aligned}
& \mathrm{P}_{\text {Line }}:=\mathrm{I}_{\mathrm{S}}{ }^{2} \cdot \mathrm{R}_{\text {line }} \quad \mathrm{P}_{\text {Line }}=111 \cdot \mathrm{~W} \\
& \mathrm{Q}_{\text {Line }}:=\mathrm{I}_{\mathrm{S}}{ }^{2} \cdot \mathrm{X}_{\text {line }} \quad \mathrm{Q}_{\text {Line }}=555 \cdot \mathrm{VAR} \\
& \left|\mathbf{S}_{\mathbf{S}}\right|=\mathrm{S}_{\mathrm{S}}:=\sqrt{\left(\mathrm{P}_{\text {load }}+\mathrm{P}_{\text {Line }}\right)^{2}+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\text {Line }}\right)^{2}} \quad \quad \mathrm{~S}_{\mathrm{S}}=1.492 \cdot \mathrm{kVA} \\
& \mathrm{~V}_{\mathrm{S}}:=\frac{\mathrm{S}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{S}}} \quad \mathrm{~V}_{\mathrm{S}}=89.546 \cdot \mathrm{~V}
\end{aligned}
$$

h) Is there something weird about this voltage? If so, what?
V_{S} is less than $\mathrm{V}_{\text {Load }}$
Why? Because the Q of the line partially cancels the Q of the load
OR Partial resonance between the inductance in the line and the capacitance of the load.
i) The efficiency. $\eta=$?

When asked for efficiency, assume the power used by $\mathrm{R}_{\text {line }}$ is a loss and $\mathrm{P}_{\text {load }}$ is the output power.
$\eta=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}}=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {out }}+\mathrm{P}_{\text {loss }}}=\frac{\mathrm{P}_{\text {load }}}{\mathrm{P}_{\text {load }}+\mathrm{P}_{\text {Line }}}=92.56 \%$
ECE 3600 AC Power Examples,

ECE 3600 AC Power Examples, p. 6

Ex. 8 In the circuit shown, the ideal voltmeter, V, reads 120 V and ideal ammeter, A , reads 5 A .

$$
\mathrm{S}_{\text {load }}:=120 \cdot \mathrm{~V} \cdot 5 \cdot \mathrm{~A} \quad \mathrm{~S}_{\text {load }}=600 \cdot \mathrm{VA}
$$

a) You add a capacitor, C, and the ammeter reading changes to 5.3 A . Find the following:

$$
\mathrm{P}_{\text {load }}=? \quad \mathrm{Q}_{\text {load }}=?
$$

I_{C} is NOT 0.3 A , That's subtracting magnitudes

$$
\begin{array}{r}
\mathrm{S}_{\mathrm{load}}:=120 \cdot \mathrm{~V} \cdot 5 \cdot \mathrm{~A} \quad \mathrm{~S}_{\text {load }}=600 \cdot \mathrm{VA}=\sqrt{\mathrm{P}_{\mathrm{load}}{ }^{2}+\mathrm{Q}_{\mathrm{load}}{ }^{2}} \\
\mathrm{OR} \quad(600 \cdot \mathrm{VA})^{2}=\mathrm{P}_{\mathrm{load}^{2}}{ }^{2}+\mathrm{Q}_{\mathrm{load}^{2}} \\
\mathrm{P}_{\mathrm{load}^{2}}{ }^{2}=(600 \cdot \mathrm{VA})^{2}-\mathrm{Q}_{\mathrm{load}}{ }^{2}
\end{array}
$$

$$
\mathrm{Q}_{\mathrm{C}}:=\frac{(120 \cdot \mathrm{~V})^{2}}{\left(\frac{1}{\omega \cdot \mathrm{C}}\right)}=-(120 \cdot \mathrm{~V})^{2} \cdot \omega \cdot \mathrm{C} \quad \mathrm{Q}_{\mathrm{C}}=-434.294 \cdot \mathrm{VAR}
$$

With Capacitor:

Double Check: $\quad \mathrm{S}_{\mathrm{S}}=\sqrt{\mathrm{P}_{\text {load }}{ }^{2}+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}\right)^{2}}=636 \cdot \mathrm{VA}$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{S}}:=120 \cdot \mathrm{~V} \cdot 5 \cdot 3 \cdot \mathrm{~A} \quad \mathrm{~S}_{\mathrm{S}}=636 \cdot \mathrm{VA}=\sqrt{\mathrm{P}_{\mathrm{load}^{2}}{ }^{2}\left(\mathrm{Q}_{\mathrm{load}}+\mathrm{Q}_{\mathrm{C}}\right)^{2}} \\
& \text { OR } \quad(636 \cdot \mathrm{VA})^{2}=\mathrm{P}_{\text {load }}{ }^{2}+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}\right)^{2} \\
& \text { Substitute in }(636 \cdot V A)^{2}=\left[(600 \cdot V A)^{2}-\mathrm{Q}_{\mathrm{load}^{2}}{ }^{2}\right]+\left(\mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}\right)^{2} \\
& =\left[(600 \cdot \mathrm{VA})^{2}-\mathrm{Q}_{\text {load }}{ }^{2}\right]+\left(\mathrm{Q}_{\text {load }}{ }^{2}+2 \cdot \mathrm{Q}_{\mathrm{C}} \cdot \mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}{ }^{2}\right) \\
& =(600 \cdot \mathrm{VA})^{2}+2 \cdot \mathrm{Q}_{\mathrm{C}} \cdot \mathrm{Q}_{\text {load }}+\mathrm{Q}_{\mathrm{C}}{ }^{2} \\
& \mathrm{Q}_{\text {load }}:=\frac{(636 \cdot \mathrm{VA})^{2}-(600 \cdot \mathrm{VA})^{2}-\mathrm{Q}_{\mathrm{C}}{ }^{2}}{2 \cdot \mathrm{Q}_{\mathrm{C}}} \quad \mathrm{Q}_{\text {load }}=165.919 \cdot \mathrm{VAR} \\
& \mathrm{P}_{\text {load }}:=\sqrt{\mathrm{S}_{\text {load }^{2}-\mathrm{Q}_{\text {load }}{ }^{2}} \quad \mathrm{P}_{\text {load }}=576.603 \cdot \mathrm{~W} .40}
\end{aligned}
$$

