The beauty of electric power is that we have a ready source of zero-entropy energy available at any outlet. That energy can be made to do all kinds of things for us-- everything from washing our clothes to entertaining our children. But even as useful as electric power is, most of us don't want a power plant in our neighborhood. Power plants are best located close to energy sources and far from population centers. And that's the other great beauty of electric power (at least the AC version), it can be generated far from where it is used, transformed to very high voltages and moved efficiently over high-voltage transmission lines.



ACSR conductor

BareNRG<sup>™</sup>

ACSR conductors are Tough

Used for overhead

transmission lines

b2

### Watch the in-class slideshow of transmission line pictures

Pay attention to:

Tower designs and sizes, and special designs at corners Multiple sets of 3-phase lines on a single set of towers Multiple sets of towers in the same corridor The number of insulator discs, which increase with voltage The wide variety of configurations Shield wire(s) Bundling & spacers Capacitor banks



The very highest wire is nearly always a **shield wire**, a grounded wire placed above the rest for lightning protection. May be simple steel cable or aluminum with steel reinforcement, often with a fiber optic data line at the center

## **Common Voltages**

| $7.2 \cdot \mathbf{kV} \cdot \sqrt{3} = 12.47$ | •kV Local distribution, reduced to 240/120V at a transformer near you. | A AND AND AND               |
|------------------------------------------------|------------------------------------------------------------------------|-----------------------------|
| 46·kV 69·kV                                    | Distribution within a city or county, between substations              | BTW. Don't try this at home |
| 115·kV 138·kV                                  | Short, light-use, rural, or older transmission lines or newer          | distribution lines          |
| 161·kV 230·kV                                  | Common transmission lines                                              |                             |
| 345·kV 500·kV 7                                | 65·kV Long-distance lines                                              |                             |

**Power handling** capabilities increase roughly proportional to the square of the voltage, and decrease with line length, see curve later in the notes.

|                | 50 mile | <u>300 mile</u> |
|----------------|---------|-----------------|
| $230 \cdot kV$ | 420·MW  | 140·MW          |
| $345 \cdot kV$ | 1230·MW | 410·MW          |
| 500·kV         | 3000·MW | 1000·MW         |
| 765∙kV         | 6800·MW | 2300·MW         |

#### Insulators

These standard-sized discs are made from porcelain or glass and coupled together to form strings. They come in different tensile force ratings (15 to 50,000 lbs) and can handle over 20kV each. They also come in special styles for fog or contamination.



The conductors themselves are not insulated. Electrical insulation would also be **thermal insulation**, and that would **not** be **good**. Because of the high currents these lines carry, they heat up. Hanging out in the air helps keep them from overheating. Overhead lines are electrically insulated from ground and one another only by air and distance.

#### **Bundling & \$ Costs**



Bundling reduces the electric field around the lines. Multiple small-radius lines look like a single line of much greater radius, consequentially:

## **Line Parameters**

- $R = resistance = r \cdot len$ upper case for the whole line, lower case for resistance per unit length, len for length.
- $L = inductance = l \cdot len$ X = reactance =  $x \cdot len = \omega \cdot l \cdot len$
- $C = capacitance = c \cdot len$ Y = admittance =  $y \cdot \text{len} = j \cdot \omega \cdot c \cdot \text{len}$
- G = conductance to ground =  $g \cdot \text{len}$ caused primarily by corona discharge, usually neglected.

| Resistance, R or r              | — <u> </u>                                                          |                           |                          | ρ at 20 °C                                   | М                              |
|---------------------------------|---------------------------------------------------------------------|---------------------------|--------------------------|----------------------------------------------|--------------------------------|
| $R = \frac{\rho \cdot len}{A}$  | len = length of line<br>A = cross-sectional area<br>ρ = resistivity | <u>Material</u><br>Copper | %<br><u>Conductivity</u> | <u>Resistivity</u><br>x10 <sup>-8</sup> ·Ω·m | Temperature<br><u>Constant</u> |
|                                 | increases with temperature                                          | Annealed<br>Hard-drawn    | 100·%<br>97.3·%          | 1.72<br>1.77                                 | 234.5 °C<br>241.5 °C           |
|                                 | $0 = \frac{M + T_2}{M + T_2} = \frac{M + T_2}{M + T_2}$             | Aluminum                  | 91.5.70                  | 1.//                                         | 271.3 °C                       |
|                                 | $\rho_{T2} = \frac{2}{M+T_1} \rho_{T1} = \frac{2}{M+20} \rho$       | Hard-drawn                | 61.%                     | 2.83                                         | 228.1 °C                       |
| Resistance incre<br>Temperature | eases with:<br>+ 20% or more                                        | Silver<br>Steel           | 108·%<br>2 -14·%         | 1.59<br>12 - 88                              | 243 °C<br>180 - 980 °C         |

Frequency ("skin effect") + ~3% for 60 Hz

Spiraling The aluminum conductors in the cables are longer because of the twisting + 1 to 2%

The large currents handled by transmission lines can cause significant heating of the lines, which causes the resistance to increase, making the problem even worse. Additionally, this heating causes the metal of the lines to expand and sag lower toward the ground, which can be a problem.

$$r$$
 = series resistance per unit length of the line =  $\frac{\rho}{A}$   $\left(\frac{\Omega}{m}\right)$  OR  $\frac{1000 \cdot \rho}{A}$   $\left(\frac{\Omega}{km}\right)$  The units will be important

Inductance, L or l

per unit length

Your textbook goes through 5 pages of work and explanation (p.450 - 455) to get to the following expression of inductance per unit length of a single-phase, two-wire transmission line. Despite that, it will still yield some useful information.  $\mu / 1$  ,  $\langle D \rangle \rangle$  /henry D = spacing between line (phases)

$$l = \frac{1}{\pi} \left( \frac{1}{4} + \ln\left(\frac{1}{r}\right) \right) \left( \frac{1}{m} \right)$$
  
r = radius of the conductor  
series reactance =  $x = \omega \frac{\mu}{\pi} \left( \frac{1}{4} + \ln\left(\frac{D}{r}\right) \right) \cdot 1000 \quad \left( \frac{\text{henry}}{\text{km}} \right)$   
 $\mu_0 := 4 \cdot \pi \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{meter}}$  = permeability of a vacuum, air is about the same

The useful information, if D , then l , x and, if r , then l , x , also true for 3-phase lines good

Line voltage, V /, D /, x / If the voltage and power handling of a line increase, then  ${f D}$  must also increase.

This is BAD, but can be effectively countered by bundling.

ECE 3600 Transmission Line notes p2



usually not good

See more in books by Weeks & Glover/Sarma/Overbye

#### Conductance to Ground or Other Phases, G or c

 $G = g \cdot len$  caused by corona discharge and leakage across insulators, usually neglected.

## Bundling



## **Underground Cables**

Common for distribution in residential areas and downtown urban areas. Very problematic for high voltages and long distances.

#### **High Capacitance**

By definition, these cables are always in close proximity to ground potential, plus they are usually made with a grounded outer conductive shield. This makes them big capacitors. While a bit of added capacitance in a neighborhood distribution system may be OK or even good, the amount you get in transmission systems is BAD. Using **H**igh-**V**oltage **DC** (HVDC) for underground and underwater transmission is a way to get around the problem of capacitive admittance, but has its own issues.

#### **Heat problems**

The thick electrical insulation also keeps the heat in, which may require forced liquid cooling systems and limits power carrying capability.

**Very Expensive** for transmission lines, esp. considering the reduced power rating.



Underground lines is a field unto itself and beyond the scope of this class.

ECE 3600 Transmission Line notes p3

## **Overhead Transmission Line Conductors**



Overhead Transmission lines are usually Aluminum Conductor Steel Reinforced (ACSR) cables. This one is 54/7 "Cardinal".

> Numbers below are not much use, b/c Based on a 1-foot spacing

| aluminum strands Based on a 1-foot spacing |         |                 |          |        |         |        |        | ang        |        |        |        |          |
|--------------------------------------------|---------|-----------------|----------|--------|---------|--------|--------|------------|--------|--------|--------|----------|
|                                            | Aluminu | um area         |          |        | Resista | ince   | -      | Capacitve  |        |        |        |          |
| ACSR                                       | AWG     |                 | Cable    | DC     | AC      | AC     | AC     | admittance | 25℃    | 50℃    | 75℃    | Ampacity |
| Conductor                                  | or      |                 | Strands  | 20℃    | 25℃     | 50°C   | 75℃    | 60Hz       | 60Hz   | 60Hz   | 60Hz   | (A)      |
| Codeword                                   | kcmil   | mm <sup>2</sup> | AL/Steel | (Ω/km) | (Ω/km)  | (Ω/km) | (Ω/km) | (µS/km)    | (Ω/km) | (Ω/km) | (Ω/km) |          |
| Turkey                                     | 6       | 13.3            | 6/1      | 2.106  | 2.149   | 2.461  | 2.677  | 4.37       | 0.394  | 0.456  | 0.472  | 105      |
| Swan                                       | 4       | 21.18           | 6/1      | 1.322  | 1.352   | 1.572  | 1.713  | 4.59       | 0.377  | 0.430  | 0.449  | 140      |
| Swanate                                    | 4       | 21.12           | 7/1      | 1.309  | 1.335   | 1.519  | 1.693  | 4.62       | 0.371  | 0.407  | 0.427  | 140      |
| Sparrow                                    | 2       | 33.59           | 6/1      | 0.830  | 0.850   | 1.010  | 1.102  | 4.84       | 0.361  | 0.404  | 0.420  | 185      |
| Sparate                                    | 2       | 33.54           | 7/1      | 0.823  | 0.840   | 0.974  | 1.083  | 4.87       | 0.358  | 0.387  | 0.397  | 185      |
| Robin                                      | 1       | 42.41           | 6/1      | 0.659  | 0.676   | 0.810  | 0.886  | 4.97       | 0.351  | 0.390  | 0.400  | 210      |
| Raven                                      | 1/0     | 53.52           | 6/1      | 0.522  | 0.535   | 0.646  | 0.709  | 5.11       | 0.341  | 0.374  | 0.381  | 240      |
| Quail                                      | 2/0     | 67.33           | 6/1      | 0.413  | 0.427   | 0.531  | 0.577  | 5.26       | 0.335  | 0.367  | 0.371  | 275      |
| Pigeon                                     | 3/0     | 85.12           | 6/1      | 0.328  | 0.338   | 0.397  | 0.476  | 5.41       | 0.325  | 0.354  | 0.358  | 315      |
| Penguin                                    | 4/0     | 107.2           | 6/1      | 0.261  | 0.270   | 0.351  | 0.381  | 5.50       | 0.316  | 0.344  | 0.344  | 365      |
| Waxwing                                    | 266.8   | 135             | 18/1     | 0.211  | 0.216   | 0.237  | 0.259  | 5.70       | 0.296  | 0.296  | 0.296  | 445      |
| Partridge                                  | 266.8   | 134.9           | 26/7     | 0.209  | 0.214   | 0.234  | 0.255  | 5.81       | 0.289  | 0.289  | 0.289  | 455      |
| Merlin                                     | 336.4   | 170.2           | 18/1     | 0.167  | 0.172   | 0.188  | 0.205  | 5.86       | 0.271  | 0.271  | 0.271  | 515      |
| Linnet                                     | 336.4   | 170.6           | 26/7     | 0.166  | 0.170   | 0.186  | 0.203  | 5.98       | 0.280  | 0.280  | 0.280  | 530      |
| Oriole                                     | 336.4   | 170.5           | 30/7     | 0.165  | 0.168   | 0.185  | 0.201  | 6.03       | 0.277  | 0.277  | 0.277  | 530      |
| Chickadee                                  | 397.5   | 200.9           | 18/1     | 0.142  | 0.145   | 0.160  | 0.173  | 6.03       | 0.281  | 0.281  | 0.281  | 575      |
| Ibis                                       | 397.5   | 201.3           | 26/7     | 0.140  | 0.144   | 0.158  | 0.172  | 6.09       | 0.274  | 0.274  | 0.274  | 590      |
| Pelican                                    | 477     | 242.3           | 18/1     | 0.118  | 0.121   | 0.133  | 0.145  | 6.21       | 0.274  | 0.274  | 0.274  | 640      |
| Flicker                                    | 477     | 241.6           | 24/7     | 0.117  | 0.120   | 0.132  | 0.144  | 6.26       | 0.268  | 0.268  | 0.268  | 670      |
| Hawk                                       | 477     | 241.6           | 26/7     | 0.117  | 0.120   | 0.132  | 0.144  | 6.29       | 0.267  | 0.267  | 0.267  | 660      |
| Hen                                        | 477     | 241.3           | 30/7     | 0.116  | 0.119   | 0.131  | 0.142  | 6.35       | 0.263  | 0.263  | 0.263  | 660      |
| Osprey                                     | 556.5   | 282.5           | 18/1     | 0.101  | 0.104   | 0.114  | 0.124  | 6.33       | 0.268  | 0.268  | 0.268  | 710      |
| Parakeet                                   | 556.5   | 282.3           | 24/7     | 0.101  | 0.103   | 0.114  | 0.124  | 6.41       | 0.263  | 0.263  | 0.263  | 720      |
| Dove                                       | 556.5   | 282.6           | 26/7     | 0.100  | 0.103   | 0.113  | 0.123  | 6.43       | 0.261  | 0.261  | 0.261  | 730      |
| Rook                                       | 636     | 323.1           | 24/7     | 0.0879 | 0.0909  | 0.0994 | 0.1083 | 6.54       | 0.258  | 0.258  | 0.258  | 780      |
| Grosbeak                                   | 636     | 321.8           | 26/7     | 0.0876 | 0.0902  | 0.0988 | 0.1076 | 6.57       | 0.256  | 0.256  | 0.256  | 790      |
| Drake                                      | 795     | 402.6           | 26/7     | 0.0702 | 0.0728  | 0.0794 | 0.0863 | 6.81       | 0.248  | 0.248  | 0.248  | 910      |
| Tern                                       | 795     | 403.8           | 45/7     | 0.0709 | 0.0738  | 0.0807 | 0.0876 | 6.72       | 0.252  | 0.252  | 0.252  | 890      |
| Rail                                       | 954     | 483.8           | 45/7     | 0.0591 | 0.0617  | 0.0676 | 0.0732 | 6.92       | 0.245  | 0.245  | 0.245  | 970      |
| Cardinal                                   | 954     | 484.5           | 54/7     | 0.0587 | 0.061   | 0.0673 | 0.0728 | 6.98       | 0.242  | 0.242  | 0.242  | 990      |
| Curlew                                     | 1033.5  | 525.5           | 54/7     | 0.0541 | 0.0564  | 0.062  | 0.0673 | 7.07       | 0.239  | 0.239  | 0.239  | 1040     |
| Bluejay                                    | 1113    | 565.5           | 45/7     |        | 0.0535  |        |        | 7.12       | 0.240  |        |        | 1070     |
| Bittern                                    | 1272    | 644.4           | 45/7     | 0.0443 |         |        |        | 7.27       | 0.235  | 0.235  | 0.235  | 1160     |
| Lapwing                                    | 1590    | 804.1           | 45/7     | 0.0354 |         | 0.042  |        | 7.56       | 0.226  | 0.226  | 0.226  | 1340     |
| Falcon                                     | 1590    | 806.2           | 54/19    | 0.0354 |         |        |        | 7.63       | 0.222  | 0.222  | 0.222  | 1360     |
| Bluebird                                   | 2156    | 1092            | 84/19    | 0.0263 |         |        | 0.0344 | 8.02       | 0.214  | 0.214  | 0.214  | 1610     |
| Kiwi                                       | 2167    | 1098            | 72/7     | 0.0262 |         |        | 0.0348 | 7.98       | 0.223  | 0.223  | 0.223  | 1607     |
| Thrasher                                   | 2312    | 1172            | 76/19    | 0.0246 |         |        |        | 8.10       | 0.213  | 0.213  |        | 1673     |
| Joree                                      | 2515    | 1274            | 76/19    | 0.0226 |         | 0.0279 |        | 8.22       | 0.210  |        | 0.210  | 1751     |

**Warning**, the column for Capacitance is often given as reactance per lenght rather than admittance which means you have to *divide* by line length to get overall capacitance.

Types of conductors used for overhead lines:

Aluminum Conductor Steel Reinforced (ACSR) conductors are the most common.

All Aluminum Conductor (AAC).

All Aluminum-Alloy Conductor (AAAC).

Aluminum Conductor Alloy-Reinforced (ACAR).

Alumoweld, an aluminum-clad steel conductor.

Expanded ACSR, which includes filler material between the steel

and aluminum to make the outer diameter bigger.

ECE 3600 Tra

### Surge Impedance, SIL & Characteristic Impedance

Take a representative km somewhere along the transmission line, where the voltage is the nominal voltage at  $0^{\circ}$ . Over that km, the 1 $\phi$  complex power due to the voltage would be:

$$V_{LN} \cdot \overline{\mathbf{I}_{LN}} = V_{LN} \cdot \overline{\Delta \mathbf{I}_{L}} = V_{LN} \cdot \overline{\left[V_{LN} \cdot (g + j \cdot \omega c)\right]} = V_{LN}^{2} \cdot \overline{\left(g + j \cdot \omega c\right)} = V_{LN}^{2} \cdot (g - j \cdot \omega c)$$

And the reactive power would be:  $-V_{LN}^2 \cdot (j \cdot \omega c)$ 

The 1¢ complex power due to the current would be:

$$\Delta V_{LN} \cdot \overline{I_L} = \left[ I_L \cdot (r + j \cdot \omega l) \right] \cdot \overline{I_L} = I_L^2 \cdot (r + j \cdot \omega l) \text{ assuming the current is constant}$$

And the reactive power would be:  $I_{L}^{2} \cdot (j \cdot \omega l)$ 

If the two reactive powers were equal and opposite, then the Q of the line would be 0, IE:

$$I_{L}^{2} \cdot (j \cdot \omega l) = -\left[-V_{LN}^{2} \cdot (j \cdot \omega c)\right] \quad \text{and} \quad \frac{V_{LN}}{I_{L}} = \sqrt{\frac{j \cdot \omega l}{j \cdot \omega c}} = \sqrt{\frac{l}{c}} = \mathbf{Z}_{0} \quad \text{Where } \mathbf{Z}_{0} \text{ is the magnitude of the impedance I should hook to the line here to get this to happen.}$$
  
Surge Impedance =  $\mathbf{Z}_{0} = \sqrt{\frac{l}{c}} = \sqrt{\frac{L}{C}} = \sqrt{\frac{x}{|y|}}$ 

SO, to get the line Q to be 0 (or pretty close), hook this impedance to the end of the line. If  $Z_0$  was purely resistive, and the line voltage at the receiving end were nominal, then the load power would be one "Surge Impedance Load", 1SIL.

SIL: SIL =  $3 \cdot \frac{V_R^2}{Z_0} = \frac{V_{LL}^2}{Z_0}$  Sometimes load powers or line power capabilities are expressed in terms of SIL.

#### **Characteristic Impedance**

The complex version of the surge impedance arises out of the full-fledged calculation of the distributed effect the transmission line parameters. It is known as the characteristic impedance and is EXACTLY the same as the characteristic impedance you found (or will find) for transmission lines in your Electromagnetics (EM) class.

$$\mathbf{Z}_{\mathbf{C}} = \sqrt{\frac{r + \mathbf{j} \cdot \mathbf{\omega} \cdot l}{g + \mathbf{j} \cdot \mathbf{\omega} \cdot c}} = \sqrt{\frac{r + \mathbf{j} \cdot x}{g + y}} = \sqrt{\frac{\mathbf{R} + \mathbf{j} \cdot \mathbf{X}}{\mathbf{G} + \mathbf{Y}}}$$
 We only use this in caculations for long-length lines

And if the line is lossless, then:  $\mathbf{Z}_{\mathbf{C}} = \mathbf{Z}_{\mathbf{0}} = \sqrt{\frac{l}{c}} = \sqrt{\frac{L}{C}} = \sqrt{\frac{x}{|y|}}$  ONLY if r = 0 = g

#### **Propagation Constant**

Another number used in caculations for long-length lines is the propagation constant:  $\gamma = \sqrt{(r + j \cdot x) \cdot (g + y)}$ Although power transmission lines share some characteristics with EM transmission lines, the wavelength ( $\lambda$ ) for 60Hz is about 5000km (3000mi), so, no Smithcharts or stub tuning for 60Hz. However, 360%5000km still works out

to 1%13.9km, so phase-angle changes may be important to consider.

#### Transients

Transients on the power lines can happen on much shorter time scales than the 60Hz waveform. Lightning strikes are assumed to produce peak currents of 10 to 20,000 amps in 1.2 $\mu$ s and then exponentially decay at a much slower rate. Switching lines on or off can result in impulses which peak in about 250 $\mu$ s and last longer than lightning impulses. These impulses produce traveling waves on the lines which can bounce back and forth along the line.

The first concern raised by these impulses is the insulation, especially in transformers, where insulation failure results in very-expensive, permanent damage. Studies are done of the **B**asic Insulation Level (BIL) for lightning impulses and **B**asic **S**witching Insulation Level (BSL) for switching impulses.

The insulation discs used with transmission lines are rarely damaged permanently by over-voltages and flashovers.



assuming the voltage is constant

ECE 3600 Transmission Line notes p5

**Surge & Lightning Arresters** are highly nonlinear devices which have a high resistance at normal voltages and low resistance at voltages over their threshold. They protect transformers and other devices from over-voltages.

Transient stability of transmission lines play only a part in the overall transient and dynamic stability of entire power systems. Stability and the control of voltage, frequency and generators are fields beyond the scope of this class.

## **HVDC Transmission Lines**

**H**igh-**V**oltage **DC** (HVDC) is used for long-distance transmission of large amounts of power, and for some underground and most underwater transmission. HVDC is also used as a power link between two AC grids which are not in sync.

The insulation requirements of transmission lines are set by the peak voltage, but the power is determined by the RMS voltage. For sinusoidal waveforms the peak is 40% higher than the RMS. For DC they are both the same, so the RMS voltage can be 40% higher and the power can be twice as much for the same insulation. For each positive line there will also be a negative line with the same voltage magnitude so the neutral current can be zero.

HVDC systems require rectifiers at the sending end to change the AC to DC and an inverter at the receiving end to return the power to AC. These require very high-voltage, very high-power, very expensive, semi-conductor parts. The sending end typically uses transformers with Y-Y, Y- $\Delta$  and  $\Delta$ -Y windings arranged so the rectifiers see a peak voltage every 30° of phase angle (every 1.39ms). This minimizes the need for filtering.

7

SII

230kV 345kV 500kV 765kV

HVDC lines and the associated power conversions are a field unto themselves and beyond the scope of this class.

| ı aı |                     | ine rypica          | values          | 5          | $ ^{L}C $   | SIL                                        |                    | LINE            |                     |  |
|------|---------------------|---------------------|-----------------|------------|-------------|--------------------------------------------|--------------------|-----------------|---------------------|--|
|      |                     | Bundling            | Line Parameters |            |             | Characteristic                             | Surge<br>Impedance | Line<br>Current | Current<br>at 3 SIL |  |
|      | Nominal<br>Voltages | Conductors<br>phase | r<br>Ω/km       | ωl<br>Ω/km | wc<br>µS/km | Impedance<br>(Surge Impedance)<br>$\Omega$ | Loading<br>MW      | at 1 SIL<br>A   | (maximum)<br>A      |  |
|      | 69·kV               | 1                   | 0.47            | 0.47       | 3.3         | 383                                        | 12.4               | 104             | 312                 |  |
|      | 138·kV              | 1                   | 0.14            | 0.48       | 3.4         | 380                                        | 50                 | 210             | 629                 |  |
|      | 230·kV              | 1                   | 0.055           | 0.489      | 3.373       | 380                                        | 140                | 350             | 1050                |  |
|      | 345·kV              | 2                   | 0.037           | 0.376      | 4.518       | 290                                        | 410                | 687             | 2061                |  |
|      | 500·kV              | 3                   | 0.029           | 0.326      | 5.220       | 250                                        | 1000               | 1155            | 3464                |  |
|      | 765·kV              | 4                   | 0.013           | 0.339      | 4.988       | 260                                        | 2250               | 1700            | 5100                |  |
|      |                     |                     |                 |            |             |                                            |                    |                 |                     |  |

# Transmission Line Typical Values

Power Handling Capability

|                                         | of SIL                     | MW    | MW   | MW   | MW   | Reason For Limit    |
|-----------------------------------------|----------------------------|-------|------|------|------|---------------------|
| Short-length Lines:   < 80km (50 miles) | 3 3·SIL                    | = 420 | 1230 | 3000 | 6750 | Overheating lines   |
| Medium-length: 80 - 240 km (50 - 1      | 50 mi) 1.75 – 3 1.75 · SIL | = 245 | 718  | 1750 | 3938 | Voltage Drop        |
| Long-length: > 240 km (150 mi)          | 1.0 - 1.75 1.SIL           | = 140 | 410  | 1000 | 2250 | Transient Stability |

Multiple



## Practical Limitations

**Short** Lines should be limited to 3 times the SIL in order to limit the  $I^2R$  heating of the line.

**Mid-length** lines are limited in order to limit the voltage drop across line less than 5%.  $\frac{|\mathbf{V}_{\mathbf{R}}|}{|\mathbf{V}_{\mathbf{S}}|} \le 0.95$ 

**Long-length** lines can become unstable, which limits loadability. The power angle should be limited:  $\delta < 30^{\circ}$ 

Sometimes series capacitors and/or shunt inductors are added to these lines to "compensate" for the line reactance.



l ine

## Power Flow (Driven by $\delta$ )

Power and current are pushed down the line by a phase angle difference ( $\delta$ , the power angle), NOT a voltage difference.

if you neglect the line losses 
$$P_{in} = P_{out} = 3 \cdot \frac{V_S \cdot V_R \cdot \sin(\delta)}{X_{line}}$$

The power grid often has multiple paths for power to flow from one substation to another. Power will flow down the various paths depending only on the line impedances and lengths. Phase-Shifting transformers allow operators of the lines to take control over the power flow. This use is still relatively rare.

Phase-Shifting transformers are more commonly found where one control area connects to another within a power region (tie line). In this position, they can control power flow from area to area.







#### Sources:

Electric Machinery and Power System Fundamentals, Stephen J, Chapman Power Systems Analysis and Design, Glover & Sarma First Course on Power Systems, Ned Mohan Transmission and Distribution of Electrical Energy, Walter L. Weeks Standard Handbook for Electrical Engineers, Fink & Beaty www.nexans.us

|                                                                  | •                                                                                                  | ter Transmission Line Models                                                                                                                                                                                                                                                                                                                                                | С                                         |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Long-length Lines: over 2                                        | 240 km (150 miles)                                                                                 | (over 200 mi in some texts)                                                                                                                                                                                                                                                                                                                                                 |                                           |
| Need:                                                            | Units                                                                                              |                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| line length: len                                                 | , d m <b>or</b> km                                                                                 | stick to the same unit length for all paramete<br>miles may also be used                                                                                                                                                                                                                                                                                                    | rs                                        |
| Resistance per unit length:                                      | $r \qquad \frac{\Omega}{\mathrm{m}} \text{ or } \frac{\Omega}{\mathrm{km}}$                        | miles may also be used                                                                                                                                                                                                                                                                                                                                                      | Units                                     |
| Inductance per unit length:                                      | $l = \frac{H}{m} \text{ or } \frac{H}{km}$ OR                                                      | Inductive reactance per unit length: x                                                                                                                                                                                                                                                                                                                                      | $\frac{\Omega}{m}$ or $\frac{\Omega}{km}$ |
| Capacitance per unit length:                                     | m km                                                                                               | Capacitance admittance per unit length: y                                                                                                                                                                                                                                                                                                                                   | $\frac{S}{m}$ or $\frac{S}{km}$           |
| Conductance to ground:                                           | $g = \frac{S}{m} \text{ or } \frac{S}{km}$                                                         | Common assumption: $g := 0 \cdot \frac{S}{km}$ $S :=$                                                                                                                                                                                                                                                                                                                       | siemens = $\frac{1}{\Omega}$              |
| Find:                                                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             | Units                                     |
| Characteristic Impedance:                                        | $\mathbf{Z}_{\mathbf{c}} = \sqrt{\frac{\mathbf{j} \cdot \mathbf{x} + \mathbf{r}}{\mathbf{y} + g}}$ |                                                                                                                                                                                                                                                                                                                                                                             | Ω                                         |
| Propagation constant:                                            | $\gamma = \sqrt{(j \cdot x + r) \cdot (y + g)}$                                                    |                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{m}$ or $\frac{1}{km}$           |
|                                                                  |                                                                                                    | If your calculator doesn't have hyperbolic                                                                                                                                                                                                                                                                                                                                  | -                                         |
|                                                                  |                                                                                                    | (but can handle comp<br>γ_len _γ_len exponents)                                                                                                                                                                                                                                                                                                                             | lex-number                                |
| Series impedance Z <sub>ser</sub>                                | ries = $\mathbf{Z}_{\mathbf{c}} \cdot \sinh(\gamma \operatorname{len})$                            | $= \mathbf{Z}_{\mathbf{c}} \cdot \frac{\mathbf{e}^{\mathbf{r} - \mathbf{e}^{\mathbf{r}}}}{2}$                                                                                                                                                                                                                                                                               | Ω                                         |
| OR                                                               | ·                                                                                                  | $= \frac{1}{\mathbf{Z}_{\mathbf{c}}} \cdot \frac{e^{\frac{\gamma \cdot \ln 2}{2}} - e^{-\frac{\gamma \cdot \ln 2}{2}}}{e^{\frac{\gamma \cdot \ln 2}{2}} + e^{-\frac{\gamma \cdot \ln 2}{2}}} = \frac{1}{\mathbf{Z}_{\mathbf{c}}} \cdot \frac{\sqrt{e^{\gamma \cdot \ln 2}} - \sqrt{e^{\gamma \cdot \ln 2}}}{\sqrt{e^{\gamma \cdot \ln 2}} + \sqrt{e^{\gamma \cdot \ln 2}}}$ | $(\gamma \text{len})$ $\Omega$            |
| Shunt impedance: $2 \cdot \mathbf{Z}_{s}$                        | shunt = $\frac{\mathbf{Z}_{c}}{\tanh\left(\gamma \cdot \frac{\operatorname{len}}{2}\right)}$       |                                                                                                                                                                                                                                                                                                                                                                             | S or $\frac{1}{\Omega}$                   |
|                                                                  | ( 2 )                                                                                              | If your calculator can't handle complex ex<br>$e^{(a+b\cdot j)} = e^{a} \cdot e^{b\cdot j} = e^{a} / b$ (in radia)                                                                                                                                                                                                                                                          | •                                         |
| Model: $\frac{\mathbf{I}_{\mathbf{S}}}{\mathbf{V}_{\mathbf{S}}}$ | Z <sub>series</sub>                                                                                | $\frac{I_{R}}{V_{R}}$                                                                                                                                                                                                                                                                                                                                                       |                                           |

 $2 \cdot \mathbf{Z}_{shunt}$ 

neutral

#### Transmission Line notes p8 ECE 3600

 $2 \cdot \mathbf{Z}_{shunt}$ 



neutral

#### ECE 3600 **Transmission Line Examples**



**ECE 3600** Transmission Line notes p10

**Ex 2.** A 345 kV transmission line is 220 km long and has the line parameters shown below. Find  $V_s$  and  $I_s$  if the line is loaded to 400MW with pf = 94% lagging.  $|V_{RLL}|$  is 335kV. pf := 0.94



## ECE 3600 Transmission Line notes p11





a) The sending end is at rated voltage and the load is three, Y-connected,  $250-\Omega$  impedances with a power factor of 0.87, leading. Find the line current,  $I_{Line}$ .



b) Find the line voltage at the load.

 $I_{Line} \cdot Z_{series} = -6.561 + 45.557j \cdot kV$ 

$$\mathbf{V}_{\mathbf{R}} := \mathbf{V}_{\mathbf{S}} - \mathbf{I}_{\mathbf{Line}} \cdot \mathbf{Z}_{\mathbf{series}} \qquad \mathbf{V}_{\mathbf{R}} = 139.352 - 45.557 \mathbf{j} \cdot \mathbf{kV} = 146.6 \mathbf{kV} \underline{/-18.1}^{\circ}$$
  
Receiving line voltage =  $\left| \sqrt{3} \cdot \mathbf{V}_{\mathbf{R}} \right| = 253.9 \cdot \mathbf{kV}$ 

Notice that  $|V_{R}|$  is bigger than  $|V_{S}|$ , this can happen when the receiving-end power factor is leading.

- c) What is the "power angle" ( $\delta$ )?  $\delta = -\arg(\mathbf{V}_{\mathbf{R}}) = 18.104 \cdot \deg$
- d) How much power is delivered to the load?

$$\mathbf{I}_{\mathbf{R}} := \frac{|\mathbf{V}_{\mathbf{R}}|}{|\mathbf{Z}_{\mathbf{L}}|} \qquad \mathbf{P}_{\mathbf{L}} = 3 \cdot |\mathbf{V}_{\mathbf{R}}| \cdot \mathbf{I}_{\mathbf{R}} \cdot \mathbf{pf} = 224.4 \cdot \mathbf{MW}$$

Power estimate for the same 
$$|\mathbf{V}_{\mathbf{R}}|$$
 and  
 $|\mathbf{V}_{\mathbf{S}}|$ , but neglecting the line resistance:  $\simeq 3 \cdot \frac{|\mathbf{V}_{\mathbf{S}}| \cdot |\mathbf{V}_{\mathbf{R}}| \cdot \sin(18.1 \cdot \deg)}{|\mathbf{Z}_{\text{series}}|} = 240 \cdot MW$ 

e) Express this loading in terms of SIL

Surge Impedance: 
$$\mathbf{Z}_{\mathbf{0}} := \sqrt{\frac{\mathbf{j} \cdot \mathbf{x}}{\mathbf{y}}}$$
  $\mathbf{Z}_{\mathbf{0}} = 353.6 \cdot \Omega$   $\frac{\mathbf{Z}_{\mathbf{0}}}{\mathbf{Z}_{\mathbf{L}}} = 1.414$  SIL load

#### ECE 3600 Transmission Line notes p12

Not asked for in this class