The beauty of electric power is that we have a ready source of zero-entropy energy available at any outlet. That energy can be made to do all kinds of things for us-- everything from washing our clothes to entertaining our children. But even as useful as electric power is, most of us don't want a power plant in our neighborhood. Power plants are best located close to energy sources and far from population centers. And that's the other great beauty of electric power (at least the AC version), it
 can be generated far from where it is used, transformed to very high voltages and moved efficiently over high-voltage transmission lines.

Watch the in-class slideshow of transmission line pictures

Pay attention to:
Tower designs and sizes, and special designs at corners Multiple sets of 3-phase lines on a single set of towers Multiple sets of towers in the same corridor The number of insulator discs, which increase with voltage The wide variety of configurations
Shield wire(s)
Bundling \& spacers
Capacitor banks

Shield Wire

The very highest wire is nearly always a shield wire, a grounded wire placed above the rest for lightning protection.
May be simple steel cable or aluminum with steel
reinforcement, often with a fiber optic data line at the center

Common Voltages

$7.2 \cdot \mathrm{kV} \cdot \sqrt{3}=12.47 \cdot \mathrm{kV} \quad$| Local distribution, reduced to $240 / 120 \mathrm{~V}$ |
| :--- |
| at a transformer near you. |

$46 \cdot \mathrm{kV} \quad 69 \cdot \mathrm{kV} \quad$ Distribution within a city or county, between substations

BTW, Don't try this at home
$115 \cdot \mathrm{kV} \quad 138 \cdot \mathrm{kV}$ Short, light-use, rural, or older transmission lines or newer distribution lines
$161 \cdot \mathrm{kV} 230 \cdot \mathrm{kV}$ Common transmission lines
$345 \cdot \mathrm{kV} \quad 500 \cdot \mathrm{kV} \quad 765 \cdot \mathrm{kV}$ Long-distance lines
Power handling capabilities increase roughly proportional to the square of the voltage, and decrease with line length, see curve later in the notes.

	$\frac{50}{}$ mile		300 mile
$230 \cdot \mathrm{kV}$	$420 \cdot \mathrm{MW}$		$140 \cdot \mathrm{MW}$
$345 \cdot \mathrm{kV}$	$1230 \cdot \mathrm{MW}$		$410 \cdot \mathrm{MW}$
$500 \cdot \mathrm{kV}$	$3000 \cdot \mathrm{MW}$		$1000 \cdot \mathrm{MW}$
$765 \cdot \mathrm{kV}$	$6800 \cdot \mathrm{MW}$		$2300 \cdot \mathrm{MW}$

Insulators

These standard-sized discs are made from porcelain or glass and coupled together to form strings. They come in different tensile force ratings (15 to $50,000 \mathrm{lbs}$) and can handle over 20 kV each. They also come in special styles for fog or contamination.

Number of standard insulator discs used in a string.
$46 \cdot \mathrm{kV} 3-4$
69.kV 4-6
$115 \cdot \mathrm{kV}$ 7-9
138 -kV 7-10
$161 \cdot \mathrm{kV}$ 10-13
230.kV 11-17
$345 \cdot \mathrm{kV}$ 16-21
$500 \cdot \mathrm{kV}$ 24-27
$765 \cdot \mathrm{kV} \quad 30-35$

The conductors themselves are not insulated. Electrical insulation would also be thermal insulation, and that would not be good. Because of the high currents these lines carry, they heat up. Hanging out in the air helps keep them from overheating. Overhead lines are electrically insulated from ground and one another only by air and distance.

Bundling \& \$ Costs

As you saw in the pictures of transmission lines, it is not uncommon to use multiple conductors per phase. This is called bundling. Some 230 kV lines and all lines above 230 kV use bundling to reduce electric field strength and corona discharge

Bundling
Conductors (the source of the "crackle \& pop" you can hear near high-voltage transmission lines).

	phase	Million $\$ / \mathrm{mi}$
$<230 \cdot \mathrm{kV}$	1	$1-2$
230 kV	$1-2$	$1-2$
$345 \cdot \mathrm{kV}$	$2-3$	$2-3$
$500 \cdot \mathrm{kV}$	$3-4$	$2-3.2$
$765 \cdot \mathrm{kV}$	4	$2.5-4$

Bundling reduces the electric field around the lines. Multiple small-radius lines look like a single line of much greater radius, consequentially:

Line Parameters

$\mathrm{R}=$ resistance $=r$.len \quad upper case for the whole line, lower case for resistance per unit length, len for length.
$\mathrm{L}=$ inductance $=l$-len $\quad \mathrm{X}=$ reactance $=x$-len $=\omega \cdot l \cdot$ len
$\mathrm{C}=$ capacitance $=c$ • len $\quad \mathrm{Y}=$ admittance $=y \cdot$ len $=\mathrm{j} \cdot \omega \cdot c$ • len
$\mathrm{G}=$ conductance to ground $=g$-len caused primarily by corona discharge, usually neglected.

Temperature $+20 \%$ or more
Frequency ("skin effect") $+\sim 3 \%$ for 60 Hz
Spiraling The aluminum conductors in the cables are longer because of the twisting +1 to 2%
The large currents handled by transmission lines can cause significant heating of the lines, which causes the resistance to increase, making the problem even worse. Additionally, this heating causes the metal of the lines to expand and sag lower toward the ground, which can be a problem.
$r=$ series resistance per unit length of the line $=\frac{\rho}{\mathrm{A}}\left(\frac{\Omega}{\mathrm{m}}\right)$ OR $\frac{1000 \cdot \rho}{\mathrm{~A}}\left(\frac{\Omega}{\mathrm{~km}}\right)$ The units will be important
Inductance, L or l _
Your textbook goes through 5 pages of work and explanation (p.450-455) to get to the following expression of inductance per unit length of a single-phase, two-wire transmission line. Despite that, it will still yield some useful information.

$$
l=\frac{\mu}{\pi} \cdot\left(\frac{1}{4}+\ln \left(\frac{\mathrm{D}}{\mathrm{r}}\right)\right)\left(\frac{\text { henry }}{\mathrm{m}}\right) \quad \begin{array}{ll}
\mathrm{D} & =\text { spacing between line (phases) } \\
\mathrm{r} & =\text { radius of the conductor }
\end{array}
$$

 Line voltage, $\mathrm{V} / \mathrm{D} / \boldsymbol{\mathrm { D }} \boldsymbol{\mathrm { F }}$ If the voltage and power handling of a line increase, then \mathbf{D} must also increase. This is BAD, but can be effectively countered by bundling.

Capacitance, C or \boldsymbol{c}
ECE 3600 Transmission Line notes p3

capacitive admittance to ground $\left.=y=j \cdot \omega \cdot \frac{\pi \cdot \varepsilon}{\ln \left(\frac{\mathrm{D}}{\mathrm{r}}\right.} \cdot 10^{9} \quad \frac{\mu \mathrm{~S}}{\mathrm{~km}}\right)$
(sometimes we get sloppy about the j)
(y actually includes the j, without the j , it's susceptance (B or b))
if $\mathrm{D} /$, then c, y
usually not good
and, if $\mathrm{r} /$, then $c /, y$, usually good
See more in books by Weeks \& Glover/Sarma/Overbye

Conductance to Ground or Other Phases, G or c

$\mathrm{G}=g \cdot$ len \quad caused by corona discharge and leakage across insulators, usually neglected.

Bundling

Bundling makes the multiple small-radius lines look like a single line of much greater radius, so:

Line resistance would depend on the conductors used, but will usually decrease.

Underground Cables

Common for distribution in residential areas and downtown urban areas.
Very problematic for high voltages and long distances.

High Capacitance

By definition, these cables are always in close proximity to ground potential, plus they are usually made with a grounded outer conductive shield. This makes them big capacitors. While a bit of added capacitance in a neighborhood distribution system may be OK or even good, the amount you get in transmission systems is BAD. Using High-Voltage DC (HVDC) for underground and underwater transmission is a way to get around the problem of capacitive admittance, but has its own issues.

Heat problems

The thick electrical insulation also keeps the heat in, which may require forced liquid cooling systems and limits power carrying capability.
Very Expensive for transmission lines, esp. considering the reduced power rating.

Underground lines is a field unto itself and beyond the scope of this class.

\qquad					steel	nds	Overhead Transmission lines are usually Aluminum Conductor Steel Reinforced (ACSR) cables. This one is 54/7 "Cardinal". Numbers below are not much use, b/c Based on a 1 -foot spacing					
	Alumi	area			Resist	ce		Capacitve	Inducti	ve Reac	ctance	
ACSR Conductor Codeword	AWG or kcmil	mm^{2}	Cable Strands AL/Steel	$\begin{array}{\|c\|} \hline D C \\ 20^{\circ} C \\ (\Omega / \mathrm{km}) \end{array}$	$\begin{gathered} \text { AC } \\ 25^{\circ} \mathrm{C} \\ (\Omega / \mathrm{km}) \end{gathered}$	$\begin{gathered} \text { AC } \\ 50{ }^{\circ} \mathrm{C} \\ (\Omega / \mathrm{km}) \end{gathered}$	AC $75^{\circ} \mathrm{C}$ (Ω / km)	admittance 60 Hz ($\mu \mathrm{S} / \mathrm{km}$)	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 60 \mathrm{~Hz} \\ & (\Omega / \mathrm{km}) \end{aligned}$	$\left\|\begin{array}{c} 50{ }^{\circ} \mathrm{C} \\ 60 \mathrm{~Hz} \\ (\Omega / \mathrm{km}) \end{array}\right\|$	$\begin{array}{\|c} 75^{\circ} \mathrm{C} \\ 60 \mathrm{~Hz} \\ (\Omega / \mathrm{km}) \end{array}$	Ampacity (A)
Turkey	6	13.3	6/1	2.106	2.149	2.461	2.677	4.37	0.394	0.456	0.472	105
Swan	4	21.18	6/1	1.322	1.352	1.572	1.713	4.59	0.377	0.430	0.449	140
Swanate	4	21.12	7/1	1.309	1.335	1.519	1.693	4.62	0.371	0.407	0.427	140
Sparrow	2	33.59	6/1	0.830	0.850	1.010	1.102	4.84	0.361	0.404	0.420	185
Sparate	2	33.54	7/1	0.823	0.840	0.974	1.083	4.87	0.358	0.387	0.397	185
Robin	1	42.41	6/1	0.659	0.676	0.810	0.886	4.97	0.351	0.390	0.400	210
Raven	1/0	53.52	6/1	0.522	0.535	0.646	0.709	5.11	0.341	0.374	0.381	240
Quail	2/0	67.33	6/1	0.413	0.427	0.531	0.577	5.26	0.335	0.367	0.371	275
Pigeon	3/0	85.12	6/1	0.328	0.338	0.397	0.476	5.41	0.325	0.354	0.358	315
Penguin	4/0	107.2	6/1	0.261	0.270	0.351	0.381	5.50	0.316	0.344	0.344	365
Waxwing	266.8	135	18/1	0.211	0.216	0.237	0.259	5.70	0.296	0.296	0.296	445
Partridge	266.8	134.9	26/7	0.209	0.214	0.234	0.255	5.81	0.289	0.289	0.289	455
Merlin	336.4	170.2	18/1	0.167	0.172	0.188	0.205	5.86	0.271	0.271	0.271	515
Linnet	336.4	170.6	26/7	0.166	0.170	0.186	0.203	5.98	0.280	0.280	0.280	530
Oriole	336.4	170.5	30/7	0.165	0.168	0.185	0.201	6.03	0.277	0.277	0.277	530
Chickadee	397.5	200.9	18/1	0.142	0.145	0.160	0.173	6.03	0.281	0.281	0.281	575
lbis	397.5	201.3	26/7	0.140	0.144	0.158	0.172	6.09	0.274	0.274	0.274	590
Pelican	477	242.3	18/1	0.118	0.121	0.133	0.145	6.21	0.274	0.274	0.274	640
Flicker	477	241.6	24/7	0.117	0.120	0.132	0.144	6.26	0.268	0.268	0.268	670
Hawk	477	241.6	26/7	0.117	0.120	0.132	0.144	6.29	0.267	0.267	0.267	660
Hen	477	241.3	30/7	0.116	0.119	0.131	0.142	6.35	0.263	0.263	0.263	660
Osprey	556.5	282.5	18/1	0.101	0.104	0.114	0.124	6.33	0.268	0.268	0.268	710
Parakeet	556.5	282.3	24/7	0.101	0.103	0.114	0.124	6.41	0.263	0.263	0.263	720
Dove	556.5	282.6	26/7	0.100	0.103	0.113	0.123	6.43	0.261	0.261	0.261	730
Rook	636	323.1	24/7	0.0879	0.0909	0.0994	0.1083	6.54	0.258	0.258	0.258	780
Grosbeak	636	321.8	26/7	0.0876	0.0902	0.0988	0.1076	6.57	0.256	0.256	0.256	790
Drake	795	402.6	26/7	0.0702	0.0728	0.0794	0.0863	6.81	0.248	0.248	0.248	910
Tern	795	403.8	45/7	0.0709	0.0738	0.0807	0.0876	6.72	0.252	0.252	0.252	890
Rail	954	483.8	45/7	0.0591	0.0617	0.0676	0.0732	6.92	0.245	0.245	0.245	970
Cardinal	954	484.5	54/7	0.0587	0.061	0.0673	0.0728	6.98	0.242	0.242	0.242	990
Curlew	1033.5	525.5	54/7	0.0541	0.0564	0.062	0.0673	7.07	0.239	0.239	0.239	1040
Bluejay	1113	565.5	45/7	0.0509	0.0535	0.0584	0.0633	7.12	0.240	0.240	0.240	1070
Bittern	1272	644.4	45/7	0.0443	0.0472	0.0515	0.0558	7.27	0.235	0.235	0.235	1160
Lapwing	1590	804.1	45/7	0.0354	0.0384	0.042	0.0453	7.56	0.226	0.226	0.226	1340
Falcon	1590	806.2	54/19	0.0354	0.0381	0.0423	0.0459	7.63	0.222	0.222	0.222	1360
Bluebird	2156	1092	84/19	0.0263	0.0296	0.0321	0.0344	8.02	0.214	0.214	0.214	1610
Kiwi	2167	1098	72/7	0.0262	0.0302	0.0317	0.0348	7.98	0.223	0.223	0.223	1607
Thrasher	2312	1172	76/19	0.0246	0.0282	0.0299	0.0328	8.10	0.213	0.213	0.213	1673
Joree	2515	1274	76/19	0.0226	0.0266	0.0279	0.0305	8.22	0.210	0.210	0.210	1751

Warning, the column for Capacitance is often given
as reactance per lenght rather than admittance which means you have to divide by line length to get overall capacitance.
Types of conductors used for overhead lines:

Aluminum Conductor Steel Reinforced (ACSR) conductors are the most common.
All Aluminum Conductor (AAC).
All Aluminum-Alloy Conductor (AAAC).
Aluminum Conductor Alloy-Reinforced (ACAR).
Alumoweld, an aluminum-clad steel conductor.
Expanded ACSR, which includes filler material between the steel and aluminum to make the outer diameter bigger.

ECE 3600 Transmission Line notes p4

Surge Impedance, SIL \& Characteristic Impedance

Take a representative km somewhere along the transmission line, where the voltage is the nominal voltage at 0°. Over that km, the 1ϕ complex power due to the voltage would be:

$$
\mathrm{V}_{\mathrm{LN}} \cdot \overline{\mathbf{I}} \mathbf{L \mathbf { N }}=\mathrm{V}_{\mathrm{LN}} \cdot \overline{\Delta \mathbf{I}_{\mathbf{L}}}=\mathrm{V}_{\mathbf{L N}} \cdot \overline{\left[\mathrm{V}_{\mathrm{LN}} \cdot(g+\mathrm{j} \cdot \omega \cdot c)\right]}=\mathrm{V}_{\mathrm{LN}}{ }^{2} \cdot \overline{(g+\mathrm{j} \cdot \boldsymbol{\omega} \cdot c)}=\mathrm{V}_{\mathrm{LN}}{ }^{2} \cdot(g-\mathrm{j} \cdot \omega \cdot c)
$$

And the reactive power would be: $-\mathrm{V}_{\mathrm{LN}}{ }^{2} \cdot(\mathrm{j} \cdot \omega \cdot c)$
assuming the voltage is constant

The 1ϕ complex power due to the current would be:

$$
\Delta \mathrm{V}_{\mathrm{LN}} \cdot \overline{\mathbf{I}_{\mathbf{L}}}=\quad\left[\mathbf{I}_{\mathbf{L}} \cdot(r+\mathrm{j} \cdot \omega \cdot l)\right] \cdot \overline{\mathbf{I}_{\mathbf{L}}}=\mathrm{I}_{\mathrm{L}}{ }^{2} \cdot(r+\mathrm{j} \cdot \omega \cdot l) \quad \text { assuming the current is constant }
$$

And the reactive power would be: $\mathrm{I}_{\mathrm{L}}{ }^{2} \cdot(\mathrm{j} \cdot \omega \cdot l)$
If the two reactive powers were equal and opposite, then the Q of the line would be $0, I E$:

$$
\begin{aligned}
& \quad \mathrm{I}_{\mathrm{L}}{ }^{2} \cdot(\mathrm{j} \cdot \omega \cdot l)=-\left[-\mathrm{V}_{\mathrm{LN}}{ }^{2} \cdot(\mathrm{j} \cdot \omega \cdot c)\right] \quad \text { and } \quad \frac{\mathrm{V}_{\mathrm{LN}}}{\mathrm{I}_{\mathrm{L}}}=\sqrt{\frac{\mathrm{j} \cdot \omega \cdot l}{\mathrm{j} \cdot \omega \cdot c}}=\sqrt{\frac{l}{c}}=\mathbf{Z}_{\mathbf{0}} \begin{array}{l}
\begin{array}{l}
\text { Where } \mathbf{Z}_{\mathbf{0}} \text { is the magnitude of the } \\
\text { impedance } I \text { should hook to the }
\end{array} \\
\text { line here to get this to happen. }
\end{array} \\
& \text { Surge Impedance }=\mathbf{Z}_{\mathbf{0}}=\quad \underline{l}=\underline{\mathrm{L}}=\sqrt{x}=
\end{aligned}
$$

SO, to get the line Q to be 0 (or pretty close), hook this impedance to the end of the line. If $\mathbf{Z}_{\mathbf{0}}$ was purely resistive, and the line voltage at the receiving end were nominal, then the load power would be one "Surge Impedance Load", 1 SIL.
SIL: \quad SIL $=3 \cdot \frac{\mathrm{~V}_{\mathrm{R}}^{2}}{\mathbf{Z}_{\mathbf{0}}}=\frac{\mathrm{V}_{\mathrm{LL}}{ }^{2}}{\mathbf{Z}_{\mathbf{0}}} \quad$ Sometimes load powers or line power capabilities are expressed in terms of SIL.

Characteristic Impedance

The complex version of the surge impedance arises out of the full-fledged calculation of the distributed effect the transmission line parameters. It is known as the characteristic impedance and is EXACTLY the same as the characteristic impedance you found (or will find) for transmission lines in your Electromagnetics (EM) class.

$$
\mathbf{Z}_{\mathbf{C}}=\sqrt{\frac{r+\mathrm{j} \cdot \omega \cdot l}{g+\mathrm{j} \cdot \omega \cdot c}}=\sqrt{\frac{r+\mathrm{j} \cdot x}{g+y}}=\sqrt{\frac{\mathrm{R}+\mathrm{j} \cdot \mathrm{X}}{\mathrm{G}+\mathrm{Y}}} \quad \text { We only use this in caculations for long-length lines }
$$

And if the line is lossless, then: $\quad \mathbf{Z}_{\mathbf{C}}=\mathbf{Z}_{\mathbf{0}}=\sqrt{\frac{l}{c}}=\sqrt{\frac{L}{\mathbf{C}}}=\sqrt{\frac{x}{|y|}} \quad$ ONLY if $\quad r=0=g$

Propagation Constant

Another number used in caculations for long-length lines is the propagation constant: $\gamma=\sqrt{(r+\mathrm{j} \cdot x) \cdot(g+y)}$ Although power transmission lines share some characteristics with EM transmission lines, the wavelength (λ) for 60 Hz is about $5000 \mathrm{~km}(3000 \mathrm{mi})$, so, no Smithcharts or stub tuning for 60 Hz . However, $360 \% / 5000 \mathrm{~km}$ still works out to $10 / 13.9 \mathrm{~km}$, so phase-angle changes may be important to consider.

Transients

Transients on the power lines can happen on much shorter time scales than the 60 Hz waveform. Lightning strikes are assumed to produce peak currents of 10 to $20,000 \mathrm{amps}$ in $1.2 \mu \mathrm{~s}$ and then exponentially decay at a much slower rate. Switching lines on or off can result in impulses which peak in about 250μ s and last longer than lightning impulses. These impulses produce traveling waves on the lines which can bounce back and forth along the line.

The first concern raised by these impulses is the insulation, especially in
 transformers, where insulation failure results in very-expensive, permanent damage. Studies are done of the Basic Insulation Level (BIL) for lightning impulses and Basic Switching Insulation Level (BSL) for switching impulses.

The insulation discs used with transmission lines are rarely damaged permanently by over-voltages and flashovers.

Surge \& Lightning Arresters are highly nonlinear devices which have a high resistance at normal voltages and low resistance at voltages over their threshold. They protect transformers and other devices from over-voltages.
Transient stability of transmission lines play only a part in the overall transient and dynamic stability of entire power systems. Stability and the control of voltage, frequency and generators are fields beyond the scope of this class.

HVDC Transmission Lines

High-Voltage DC (HVDC) is used for long-distance transmission of large amounts of power, and for some underground and most underwater transmission. HVDC is also used as a power link between two AC grids which are not in sync.

The insulation requirements of transmission lines are set by the peak voltage, but the power is determined by the RMS voltage. For sinusoidal waveforms the peak is 40% higher than the RMS. For DC they are both the same, so the RMS voltage can be 40% higher and the power can be twice as much for the same insulation. For each positive line there will also be a negative line with the same voltage magnitude so the neutral current can be zero.
HVDC systems require rectifiers at the sending end to change the $A C$ to $D C$ and an inverter at the receiving end to return the power to AC. These require very high-voltage, very high-power, very expensive, semi-conductor parts. The sending end typically uses transformers with $Y-Y, Y-\Delta$ and $\Delta-Y$ windings arranged so the rectifiers see a peak voltage every 30° of phase angle (every 1.39 ms). This minimizes the need for filtering.
HVDC lines and the associated power conversions are a field unto themselves and beyond the scope of this class.

Transmission Line Typical Values

	Bundling			Line Parameters		
Nominal Voltages	Conductors	r	ωl	ωc		
$69 \cdot \mathrm{kV}$	1	0.47	0.47	3.3		
$138 \cdot \mathrm{kV}$	1	0.14	0.48	3.4		
$230 \cdot \mathrm{kV}$	1	0.055	0.489	3.373		
$345 \cdot \mathrm{kV}$	2	0.037	0.376	4.518		
$500 \cdot \mathrm{kV}$	3	0.029	0.326	5.220		
$765 \cdot \mathrm{kV}$	4	0.013	0.339	4.988		

$\left\|\mathrm{Z}_{\mathrm{C}}\right\|$	SIL Surge Characteristic Impedance (Surge Impedance)	Line Impedance Loading MW	Line Current at SIL
A	Current at 3 SIL (maximum)		
383	12.4	104	312
380	50	210	629
380	140	350	1050
290	410	687	2061
250	1000	1155	3464
260	2250	1700	5100

Multiple of SIL

Power Handling Capability

| | | of SIL | | MW | MW | MW | MW |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- | Reason For Limit

230kV 345kV 500kV 765kV
MW MW MW MW Reason For Limit
$\left.\begin{array}{lrrrr|l}3 & 3 \cdot \text { SIL }= & 420 & 1230 & 3000 & 6750 \\ 1.75-3 & 1.75 \cdot \mathrm{SIL}= & 245 & 718 & 1750 & 3938\end{array}\right)$ Overheating lines

Practical Limitations

ECE 3600 Transmission Line notes p6

Short Lines should be limited to 3 times the SIL in order to limit the $I^{2} R$ heating of the line.
Mid-length lines are limited in $\begin{aligned} & \begin{array}{l}\text { order to limit the voltage drop } \\ \text { across line less than 5\%. }\end{array}\end{aligned} \frac{\left|\mathbf{V}_{\mathbf{R}}\right|}{\left|\mathbf{V}_{\mathbf{S}}\right|} \leq 0.95$

Long-length lines can become unstable, which limits loadability. The power angle should be limited: $\delta \leq 30^{\circ}$
Sometimes series capacitors and/or shunt inductors are added to these lines to "compensate" for the line reactance.

Power and current are pushed down the line by a phase angle difference (δ, the power angle), NOT a voltage difference.

$$
\text { if you neglect the line losses } \quad P_{i n}=P_{\text {out }}=3 \cdot \frac{V_{S} \cdot V_{R} \cdot \sin (\delta)}{X_{\text {line }}}
$$

The power grid often has multiple paths for power to flow from one substation to another. Power will flow down the various paths depending only on the line impedances and lengths. Phase-Shifting transformers allow operators of the lines to take control over the power flow. This use is still relatively rare.

Phase-Shifting transformers are more commonly found where one control area connects to another within a power region (tie line). In this position, they can control power flow from area to area.

Combating Voltage Sag The effect of Adding Capacitance at Receiving end of a Transmission Line

Watch the Animations Shown in class
$\mathbf{V}_{\mathbf{S}}$ is the line-neutral voltage at the sending end. $\mathbf{V}_{\mathbf{R}}$ is the line-neutral voltage at the receiving end.
$\Delta \mathbf{V}$ is the voltage difference between the two ends. $\mathbf{I}_{\mathbf{L}}$ is the line current.

You should notice a similarity between this phasor diagram and that of synchronous generators.

Power companies add capacitance at the receiving end of transmission lines if the voltage is too low in order to raise the voltage. These drawing show how this works.

Sources:
Electric Machinery and Power System Fundamentals, Stephen J, Chapman
Power Systems Analysis and Design, Glover \& Sarma
First Course on Power Systems, Ned Mohan
Transmission and Distribution of Electrical Energy, Walter L. Weeks Standard Handbook for Electrical Engineers, Fink \& Beaty www.nexans.us

Long-length Lines: over 240 km (150 miles)
Need:
line length: len ,d m or km
Resistance per unit length: $\quad r \quad \frac{\Omega}{\mathrm{~m}}$ or $\frac{\Omega}{\mathrm{km}}$
(over 200 mi in some texts)
stick to the same unit length for all parameters miles may also be used

Units
Inductance per unit length: $\quad l \quad \frac{\mathrm{H}}{\mathrm{m}}$ or $\frac{\mathrm{H}}{\mathrm{km}} \quad$ OR Inductive reactance per unit length: $\quad x \frac{\Omega}{\mathrm{~m}}$ or $\frac{\Omega}{\mathrm{km}}$
Capacitance per unit length: $\quad c \quad \frac{\mathrm{~F}}{\mathrm{~m}}$ or $\frac{\mathrm{F}}{\mathrm{km}} \quad$ OR Capacitance admittance per unit length: $\quad y \quad \frac{\mathrm{~S}}{\mathrm{~m}}$ or $\frac{\mathrm{S}}{\mathrm{km}}$
Conductance to ground: $\quad g \quad \frac{\mathrm{~S}}{\mathrm{~m}}$ or $\frac{\mathrm{S}}{\mathrm{km}}$
Common assumption:
$\mathrm{S}:=$ siemens $=\frac{1}{\Omega}$

Find:
Characteristic Impedance: $\quad \mathbf{Z}_{\mathbf{c}}=\sqrt{\frac{\mathrm{j} \cdot x+r}{y+g}}$

$$
\frac{1}{\mathrm{~m}} \text { or } \frac{1}{\mathrm{~km}}
$$

If your calculator doesn't have hyperbolic trig functions
(but can handle complex-number exponents)
Ω

Shunt admittance:

$$
\frac{\mathbf{Y}_{\text {shunt }}}{2}=\frac{1}{\mathbf{Z}_{\mathbf{c}}} \cdot \tanh \left(\gamma \cdot \frac{\text { len }}{2}\right)=\frac{1}{\mathbf{Z}_{\mathbf{c}}} \cdot \frac{\mathrm{e}^{\gamma \cdot \frac{\text { len }}{2}}-\mathrm{e}^{-\gamma \cdot \frac{\text { len }}{2}}}{\mathrm{e}^{\gamma \cdot \frac{\operatorname{len}}{2}}+\mathrm{e}^{-\cdot \cdot \frac{\operatorname{len}}{2}}}=\frac{1}{\mathbf{Z}_{\mathbf{c}}} \cdot \frac{\sqrt{\mathrm{e}^{\gamma \cdot \mathrm{len}}}-\sqrt{\mathrm{e}^{-(\gamma \cdot \operatorname{len})}}}{\sqrt{\mathrm{e}^{\gamma \cdot \mathrm{len}}}+\sqrt{\mathrm{e}^{-(\gamma \cdot \operatorname{len})}}}
$$

S or $\frac{1}{\Omega}$
If your calculator can't handle complex exponents

$$
e^{(a+b \cdot j)}=e^{a} \cdot e^{b \cdot j}=e^{a} \underline{/ b(\text { in radians })}
$$

Model:

Need:

Units

line length: len , d m or km
Resistance per unit length: $\quad r \quad \frac{\Omega}{\mathrm{~m}}$ or $\frac{\Omega}{\mathrm{km}}$
stick to the same unit length for all parameters miles may also be used
Inductance per unit length: $\quad l \quad \frac{\mathrm{H}}{\mathrm{m}}$ or $\frac{\mathrm{H}}{\mathrm{km}} \quad$ OR Inductive reactance per unit length: $\quad x \frac{\Omega}{\mathrm{~m}}$ or $\frac{\Omega}{\mathrm{km}}$

Capacitance per unit length: $c \quad \frac{\mathrm{~F}}{\mathrm{~m}}$ or $\frac{\mathrm{F}}{\mathrm{km}} \quad$ OR Capacitance admittance per unit length: $\quad y \quad \frac{\mathrm{~S}}{\mathrm{~m}}$ or $\frac{\mathrm{S}}{\mathrm{km}}$
Conductance to ground: $\quad g \quad \frac{\mathrm{~S}}{\mathrm{~m}}$ or $\frac{\mathrm{S}}{\mathrm{km}} \quad$ Common assumption: $g:=0 \cdot \frac{\mathrm{~S}}{\mathrm{~km}}$
Find:
Surge Impedance: $\quad \mathbf{Z}_{\mathbf{0}}=\sqrt{\frac{x \cdot \mathrm{j}}{y}} \quad$ Only needed if load is in terms of SIL
Series Resistance: $\quad \mathrm{R}_{\text {line }}=r$ len Ω
Series impedance $\quad \mathbf{Z}_{\text {series }}=(r+\mathrm{j} \cdot x) \cdot$ len $\quad \Omega$
Shunt admittance:

$$
\frac{\mathbf{Y}_{\text {shunt }}}{2}=y \cdot \frac{\text { len }}{2}
$$

OR

$$
\mathrm{S}:=\text { siemens }=\frac{1}{\Omega}
$$

$$
2 \cdot \mathbf{Z}_{\text {shunt }}=\frac{2}{y \cdot \operatorname{len}}
$$

OR:

Short-length Lines: less than $80 \mathrm{~km}(50 \mathrm{mi})$ (less than 100 mi in some texts)

Same as above but without the capacitors

ECE 3600 Transmission Line Examples

Ex1. A 500 kV transmission line is 500 km long and has the line parameters shown below. Use the long-length model to find $\mathbf{V}_{\mathbf{S}}$ and $\mathbf{I}_{\mathbf{S}}$ if the line is loaded to 900 MVA and $\left|\mathbf{V}_{\mathbf{R L L}}\right|$ is 490 kV . Assume the phase angle of $\mathbf{V}_{\mathbf{R}}$ is 0° and assume load $\mathrm{pf}=1$.

$$
\text { len }:=500 \cdot \mathrm{~km} \quad \mathrm{~V}_{\text {RLL }}:=490 \cdot \mathrm{kV} \quad \mathbf{V}_{\mathbf{R}}:=\frac{\mathrm{V}_{\mathrm{RLL}}}{\sqrt{3}} \quad \mathrm{~S}_{1 \phi}:=\frac{900 \cdot \mathrm{MVA}}{3}
$$

$$
\begin{array}{ll}
r:=0.029 \cdot \frac{\Omega}{\mathrm{~km}} & \text { Assume: } \\
x:=0.3:=0 \cdot \frac{\mathrm{~S}}{\mathrm{~km}} \\
x \cdot \frac{\Omega}{\mathrm{~km}} & y:=\mathrm{j} \cdot\left(5.220 \cdot 10^{-6}\right) \cdot \frac{\mathrm{S}}{\mathrm{~km}}
\end{array}
$$

Note: These are typical values

 for a 500 kV transmission lineLong-length line model:

Characteristic Impedance:	$\mathbf{Z}_{\mathbf{c}}:=\sqrt{\frac{\mathrm{j} \cdot x+r}{y+g}}$	$\mathbf{Z}_{\mathbf{c}}=250.151-11.104 \mathrm{j} \cdot \Omega$
Propagation constant:	$\gamma:=\sqrt{(\mathrm{j} \cdot x+r) \cdot(y+g)}$	$\gamma=5.797 \cdot 10^{-5}+1.306 \cdot 10^{-3} \mathrm{j}$

Series impedance: $\quad \mathbf{Z}_{\text {series }}:=\mathbf{Z}_{\mathbf{c}} \cdot \sinh (\gamma \cdot \operatorname{len}) \quad \mathbf{Z}_{\text {series }}=12.508+151.772 \mathrm{j} \cdot \Omega$

Shunt admittance:
(Not used in my solution)

$$
\mathbf{Y}_{\text {shunt }}:=\frac{2}{\mathbf{Z}_{\mathbf{c}}} \cdot \tanh \left(\gamma \cdot \frac{\text { len }}{2}\right)
$$

$$
\frac{\mathbf{Y}_{\text {shunt }}}{2}=4.49 \cdot 10^{-6}+1.353 \cdot 10^{-3} \mathrm{j} \quad \cdot \mathrm{~S}
$$

Shunt impedance:

$$
\mathbf{Z}_{\text {shunt }}:=\frac{\mathbf{Z}_{\mathbf{c}}}{2 \cdot \tanh \left(\gamma \cdot \frac{\operatorname{len}}{2}\right)}
$$

$$
2 \cdot \mathbf{Z}_{\text {shunt }}=2.451-738.924 \mathrm{j} \cdot \Omega
$$

If it were med. length: $\frac{2}{y \cdot \text { len }}=-766.284 \mathrm{j} \cdot \Omega$

Solve circuit:
$\mathbf{I}_{\mathbf{R}}:=\frac{\mathrm{S}_{1 \phi}}{\left|\mathbf{V}_{\mathbf{R}}\right|} \quad \begin{aligned} & \text { (Not complex in this case because } \mathrm{pf}=1 \\ & \begin{array}{l}\text { otherwise include a phase angle calculated } \\ \text { from the pf or load other information) }\end{array}\end{aligned}$

$$
\begin{aligned}
& \mathbf{I}_{\mathbf{L}}:=\mathbf{I}_{\text {Zshunt }}{ }^{+} \mathbf{I}_{\mathbf{R}} \\
& \mathbf{I}_{\mathbf{L}}=1.062 \cdot 10^{3}+382.852 \mathrm{j} \quad \cdot \mathrm{~A} \\
& \mathbf{v}_{\mathbf{S}}:=\mathbf{V}_{\mathbf{R}}+\mathbf{I}_{\mathbf{L}} \cdot \mathbf{Z}_{\text {series }} \\
& \mathbf{I}_{\text {ZshuntS }}:=\frac{\mathbf{V}_{\mathbf{S}}}{2 \cdot \mathbf{Z}_{\text {shunt }}} \\
& \mathbf{V}_{\mathbf{S}}=2.381 \cdot 10^{5}+1.659 \cdot 10^{5} \mathbf{j} \quad \cdot \mathrm{~V} \\
& \left|\mathbf{V}_{\mathbf{S}}\right|=290.192 \cdot \mathrm{kV} \quad \arg \left(\mathbf{V}_{\mathbf{S}}\right)=34.874 \cdot \mathrm{deg} \\
& \left|\sqrt{3} \cdot \mathbf{V}_{\mathbf{S}}\right|=502.628 \cdot \mathrm{kV} \\
& \mathbf{I}_{\mathbf{S}}:=\mathbf{I} \text { ZshuntS }{ }^{+} \mathbf{I}_{\mathbf{L}} \\
& \mathbf{I}_{\mathbf{S}}=838.23+705.786 \mathrm{j} \cdot \mathrm{~A} \\
& \left|\mathbf{I}_{\mathbf{S}}\right|=1096 \cdot \mathrm{~A} \quad \arg \left(\mathbf{I}_{\mathbf{S}}\right)=40.097 \cdot \mathrm{deg}
\end{aligned}
$$

ECE 3600 Transmission Line notes p11

Ex 2. A 345 kV transmission line is 220 km long and has the line parameters shown below.
Find $\mathbf{V}_{\mathbf{S}}$ and $\mathbf{I}_{\mathbf{S}}$ if the line is loaded to 400 MW with $\mathrm{pf}=94 \%$ lagging. $\left|\mathbf{V}_{\mathbf{R L L}}\right|$ is 335 kV . pf :=0.94

$$
\text { len }:=220 \cdot \mathrm{~km} \quad \mathrm{~V}_{\text {RLL }}:=335 \cdot \mathrm{kV} \quad \mathbf{V}_{\mathbf{R}}:=\frac{\mathrm{V}_{\mathrm{RLL}}}{\sqrt{3}} \quad \begin{aligned}
& \text { Assume the phase angle } \\
& \text { of } \mathbf{V}_{\mathbf{R}} \text { is } 0^{\circ} \text { if } \mathbf{V}_{\mathbf{R}} \text { is given }
\end{aligned}
$$

$$
r:=0.037 \cdot \frac{\Omega}{\mathrm{~km}} \quad \text { Assume: } g:=0 \cdot \frac{\mathrm{~S}}{\mathrm{~km}} \quad \text { Note: These are typical values }
$$ for a 345 kV transmission line

$$
x:=0.376 \cdot \frac{\Omega}{\mathrm{~km}} \quad y:=\mathrm{j} \cdot\left(4.518 \cdot 10^{-6}\right) \cdot \frac{\mathrm{S}}{\mathrm{~km}}
$$

Medium-length line model:

Series impedance:	$\mathbf{Z}_{\text {series }}:=(r+\mathrm{j} \cdot x) \cdot$ len	$\mathbf{Z}_{\text {series }}=8.14+82.72 \mathrm{j} \cdot \Omega$
Shunt admittance:	$\mathbf{Y}_{\text {shunt }}:=y \cdot$ len	$\frac{\mathbf{Y}_{\text {shunt }}}{2}=496.98 \mathrm{j} \cdot \mu \mathrm{S}$
Not used in my solution		
Shunt impedance:	$\mathbf{Z}_{\text {shunt }}:=\frac{1}{y \cdot l \mathrm{len}}$	$2 \cdot \mathbf{Z}_{\text {shunt }}=-2.012 \cdot 10^{3} \mathrm{j} \cdot \Omega$

Solve circuit:

$$
\operatorname{acos}(\mathrm{pf})=19.948 \cdot \mathrm{deg}
$$

$$
\mathrm{S}_{1 \phi}:=\frac{400 \cdot \mathrm{MW}}{3 \cdot \mathrm{pf}}
$$

$$
\begin{aligned}
& \mathbf{I}_{\mathbf{R}}:=\frac{\mathrm{S}_{1 \phi}}{\left|\mathbf{V}_{\mathbf{R}}\right|} \cdot \mathrm{e}^{-\mathrm{j} \cdot \operatorname{acos(\mathrm {pf})}} \quad \begin{array}{l}
\text { (Negative phase angle } \\
\text { because the } \mathrm{pf} \text { is lagging) }
\end{array} \\
& \mathbf{I}_{\mathbf{R}}=689.4-250.2 \mathrm{i} \cdot \mathrm{~A}
\end{aligned}
$$

$\mathbf{I}_{\text {Zshunt }}:=\frac{\mathbf{V}_{\mathbf{R}}}{2 \cdot \mathbf{Z}_{\text {shunt }}} \quad \quad \mathbf{I}_{\text {Zshunt }}=96.122 \mathrm{j} \cdot \mathrm{A}$
$\mathbf{I}_{\mathbf{L}}:=\mathbf{I}_{\text {Zshunt }}+\mathbf{I}_{\mathbf{R}} \quad \mathbf{I}_{\mathbf{L}}=689.373-154.087 \mathrm{j} \cdot \mathrm{A}$
$\mathbf{V}_{\mathbf{S}}:=\mathbf{V}_{\mathbf{R}}+\mathbf{I}_{\mathbf{L}} \cdot \mathbf{Z}_{\text {series }} \quad \quad \mathbf{V}_{\mathbf{S}}=2.118 \cdot 10^{5}+5.577 \cdot 10^{4} \mathbf{j} \quad \bullet \mathrm{~V} \quad\left|\mathbf{V}_{\mathbf{S}}\right|=218.991 \cdot \mathrm{kV} \quad \arg \left(\mathbf{V}_{\mathbf{S}}\right)=14.754 \cdot \mathrm{deg}$
Line voltage: $\left|\sqrt{3} \cdot \mathbf{V}_{\mathbf{S}}\right|=379.303 \cdot \mathrm{kV}$
power angle $=\delta=\arg \left(\mathbf{V}_{\mathbf{S}}\right)-\arg \left(\mathbf{V}_{\mathbf{R}}\right)=14.754 \cdot \operatorname{deg}$
$\mathbf{I}_{\text {ZshuntS }}:=\frac{\mathbf{V}_{\mathbf{S}}}{2 \cdot \mathbf{Z}_{\text {shunt }}}$
$\mathbf{I}_{\text {ZshuntS }}=-27.717+105.245 \mathrm{j} \cdot \mathrm{A}$
$\mathbf{I}_{\mathbf{S}}:=\mathbf{I}_{\text {Zshunt }}{ }^{+} \mathbf{I}_{\mathbf{L}}$
$\mathbf{I}_{\mathbf{S}}=661.657-48.842 \mathrm{j} \cdot \mathrm{A}$
$\left|\mathbf{I}_{\mathbf{S}}\right|=663 \cdot \mathrm{~A}$
$\arg \left(\mathbf{I}_{\mathbf{S}}\right)=-4.222 \cdot \operatorname{deg}$

Ex3. A 230 kV transmission line has the following length and line parameters.
len $:=150 \cdot \mathrm{~km}$
$r:=0.06 \cdot \frac{\Omega}{\mathrm{~km}}$
$x:=0.5 \cdot \frac{\Omega}{\mathrm{~km}}$
$g:=0 \cdot \frac{\mathrm{~S}}{\mathrm{~km}}$
$y:=\mathrm{j} \cdot\left(4 \cdot 10^{-6}\right) \cdot \frac{\mathrm{S}}{\mathrm{km}}$

Medium-length line model:

Series impedance:	$\mathbf{Z}_{\text {series }}:=(r+\mathrm{j} \cdot x) \cdot$ len
Shunt admittance:	$\mathbf{Y}_{\text {shunt }}:=y \cdot$ •len
Shunt impedance:	$\mathbf{Z}_{\text {shunt }}:=\frac{1}{y \cdot \text { len }}$

$$
\begin{aligned}
\mathbf{Z}_{\text {series }} & =9+75 \mathrm{j} \cdot \Omega \\
\frac{\mathbf{Y}_{\text {shunt }}}{2} & =0.3 \mathrm{j} \cdot \mathrm{mS} \\
2 \cdot \mathbf{Z}_{\text {shunt }} & =-3.333 \mathrm{j} \cdot \mathrm{k} \Omega
\end{aligned}
$$

a) The sending end is at rated voltage and the load is three, Y -connected, $250-\Omega$ impedances with a power factor of 0.87 , leading. Find the line current, $\mathbf{I}_{\text {Line }}$.

$$
\mathbf{Z}:=\mathbf{Z}_{\text {series }}+\frac{1}{\frac{\mathbf{Y}_{\text {shunt }}}{2}+\frac{1}{\mathbf{Z}_{\mathbf{L}}}}
$$

$$
\mathbf{Z}=210.467-56.544 \mathrm{j} \cdot \Omega=217.9 \Omega \underline{/-15.04^{\circ}}
$$

$$
\mathbf{I}_{\text {Line }}:=\frac{\mathbf{v}_{\mathbf{S}}}{\mathbf{Z}} \quad \mathbf{I}_{\text {Line }}=588.459+158.096 \mathrm{j} \cdot \mathrm{~A}=609.3 \mathrm{~A} \underline{15.040}
$$

b) Find the line voltage at the load. $\quad \mathbf{I}_{\mathbf{L i n e}} \cdot \mathbf{Z}_{\text {series }}=-6.561+45.557 \mathrm{j} \cdot \mathrm{kV}$

$$
\begin{array}{ll}
\mathbf{V}_{\mathbf{R}}:=\mathbf{V}_{\mathbf{S}}-\mathbf{I} \mathbf{L i n e} \cdot \mathbf{Z}_{\text {series }} & \mathbf{V}_{\mathbf{R}}=139.352-45.557 \mathrm{j} \cdot \mathrm{kV}=146.6 \mathrm{kV} /-18.1^{\circ} \\
& \text { Receiving line voltage }=\left|\sqrt{3} \cdot \mathbf{V}_{\mathbf{R}}\right|=253.9 \cdot \mathrm{kV}
\end{array}
$$

Notice that $\left|\mathbf{V}_{\mathbf{R}}\right|$ is bigger than $\left|\mathbf{V}_{\mathbf{S}}\right|$, this can happen when the receiving-end power factor is leading.
c) What is the "power angle" (δ) ? $\quad \delta=-\arg \left(\mathbf{V}_{\mathbf{R}}\right)=18.104 \cdot \mathrm{deg}$
d) How much power is delivered to the load?

$$
\mathrm{I}_{\mathrm{R}}:=\frac{\left|\mathbf{V}_{\mathbf{R}}\right|}{\left|\mathbf{Z}_{\mathbf{L}}\right|} \quad \mathrm{P}_{\mathrm{L}}=3 \cdot\left|\mathbf{V}_{\mathbf{R}}\right| \cdot \mathrm{I}_{\mathrm{R}} \cdot \mathrm{pf}=224.4 \cdot \mathrm{MW}
$$

Power estimate for the same $\left|\mathbf{V}_{\mathbf{R}}\right|$ and $\left|\mathbf{V}_{\mathbf{S}}\right|$, but neglecting the line resistance: $\simeq 3 \cdot \frac{\mathbf{V}_{\mathbf{S}} \cdot \cdot \mid \mathbf{R} \cdot \sin (18.1 \cdot \mathrm{deg})}{\left|\mathbf{Z}_{\text {series }}\right|}=240 \cdot \mathrm{MW}$
e) Express this loading in terms of SIL

$$
\text { Surge Impedance: } \quad \mathbf{Z}_{\mathbf{0}}:=\sqrt{\frac{\mathrm{j} \cdot x}{y}} \quad \mathbf{Z}_{\mathbf{0}}=353.6 \cdot \Omega \quad \frac{\mathbf{Z}_{\mathbf{0}}}{\mathrm{Z}_{\mathrm{L}}}=1.414
$$

