## ECE 3600 Exam 1 Given Fall 2019 (The space between problems has been removed.) First part, Closed EVERYTHING

Write Legibly! If I can't read what you've written or your answer is ambiguous, I'll assume you don't know.

1. The three largest sources of energy used to produce electricity in the US are:

- a) Which of these sources is best from a global-warming perspective?
- b) Which of these sources can be used in a significantly more efficient way? How?
- 2. Name 3 sources of electrical power for the grid which do not produce greenhouse gasses by normal operation.
- 3. The Rankin-cycle (steam cycle) that is used in many power plants can be separated into 4 main steps or operations. List those steps in order, starting with the step where heat energy enters the cycle.
  - 1 2 3
- 4. Express power lost using the following:  $P_{in}$  and  $\eta$
- 5. Electrical circuits can be used as analogy of magnetic "circuits".
  Fill in the blanks below with electromagnetic terms or symbols to comlete the analogies.
  \_\_\_\_\_\_\_ is like voltage.
  \_\_\_\_\_\_\_ is like resistance.
  \_\_\_\_\_\_\_ is like current.



N turns

4

- 6. A single-phase transformer is rated at 2400 VA, 1200/240 V. The primary is hooked to a 1000V source a) The primary is hooked to a 1000-V source, what is the secondary voltage?
  - b) At this voltage (1000-V primary), what is the maximum power that transformer should be allowed to transform? (Assuming the right type and value of load.)
  - c) In order to actually transform this much power, what should the load impedance value be?
  - d) In order to actually transform this much power, what type load impedance should be used?
  - e) What is the turns ratio of this transformer?
  - f) A resistor, R<sub>L</sub>, hooked to the secondary of this transformer would appear how big from the primary side?
- 7. A single-phase transformer is rated at 500/250 V, 1 kVA. The primary is hooked to a 250V source. A 25-Ω resistor is hooked to the secondary. Determine if this transformer is operating within its ratings and show how you determine this.

## F19 Problems Closed book, Closed notes except reference sheet. Calculator are OK.

1. (40 pts) A capacitor (C, shown below) is used to partially correct the power factor of a load to 0.9. A<sub>1</sub> and A<sub>2</sub> are ideal ameters. V<sub>1</sub> and V<sub>2</sub> are ideal voltmeters. The load uses 720W. Find the following:



b) The load can be modeled as 2 parts in series. Draw the model and find the values of the parts.

c) The voltage measured by the ideal voltmeter, labeled  $V_1$ .  $V_1 = ?$ 

d) The efficiency.  $\eta = ?$ 

- e) Add an additional component to the drawing above in order to completely correct the power factor. Find the value of the component.
- f) Without making any additional calculations, would the efficiency be better or worse with the added component of part e)?
   circle one

## ECE 3600 Exam 1 Fall 19 p3

- 2. (35 pts) Find the following:
  - a) The line current that would be measured by an ammeter.



- b) The power factor of the load. Don't include the lines.
- c) The power consumed by the three-phase load. Don't include power lost in the lines.
- d) What is the efficiency of this system?
- e) What is the line voltage at the load? Just magnitude.
- f) The same load could also be represented by Y-connected, parallel  $R_{YP}$  and  $X_{YP}$

Find the value of  $R_{\ensuremath{YP}}$  .

 $R_{\rm YP}$  can be found from the load voltage and power, both found on the last page.

 $R_{L}=1\cdot\Omega$ 

Line resistance



p3

h) What is the new efficiency of this system?

g) The load power factor is corrected at the load. (Now the load looks like  $R_{YP}$  alone with no  $X_{YP}$ .)

What is the new load power of this system?

## Answers Questions

| 1. | Natural Gas               | Coal Nu               | uclear                  | a) Nucle     | ear b)              | Natural Gas      | In a combined         | d-cycle p        | ower plant                   | t.      |
|----|---------------------------|-----------------------|-------------------------|--------------|---------------------|------------------|-----------------------|------------------|------------------------------|---------|
| 2. | 3 of these:               | Hydroele              | ctric win               | d sol        | lar (steam          | or solar-cells)  | nuclea                | ır g             | eothermal                    |         |
| 3. | 1 Boiler 2 Ste            | eam turbine           | 3 Conden                | ser 4 E      | Boiler feed         | pump             | 4. P <sub>losse</sub> | <sub>s</sub> = P | $P_{in} - \eta \cdot P_{in}$ |         |
| 5. | Ni or Ampere              | <u>)-turns</u> is li  | ke voltage.             | <u> </u>     | <u>uctance</u> is   | s like resistanc | e. <u>Φ or</u>        | <u>Flux</u> is   | like curren                  | ıt.     |
| 6. | a) 200·V b)               | 2·A c)                | 20·A d)                 | Purely resis | stive, powe         | r factor of 1    | e) 5 : 1              | f)25·R L         |                              |         |
| 7. | NO I <sub>2</sub> , rated | = $4 \cdot A <$       | 5.A actual of           | current      |                     |                  |                       |                  |                              |         |
| Pr | oblems 1. a)              | 6.4·A                 | 7.01·A                  | b) —         | ~~~′                | 000-             | c) 142.5·V            | d) 85.4          | %                            |         |
|    | e) 59.2·μF in p           | arallel with          | C f) i)                 |              | $14.7 \cdot \Omega$ | 26.94·mH         |                       |                  |                              |         |
| 2. | a) 184.8·V<br>f)6.54·Ω a) | 38.4·A b)<br>11.78·kW | 0.631 c) 1<br>h) 87.7.% | l.48∙kW      | d) 72.2∙%           | e) 273.9·V       | ECI                   | E 3600           | Exam 1 F                     | -all 19 |
|    |                           |                       | •                       |              |                     |                  |                       |                  |                              |         |