ECE 3600 Final Exam Study Guide

Review: Wednesday, 12/14, 3:30 - 5:00 pm in regular classroom

Final Exam: Thursday, 12/15, 1:00 pm in regular classroom

Arn will be in WEB 2230 Tuesday 12/13 1:00 - 3:00 for a ECE 2210 review and Wednesday 8:00am - 10:00 for their Final

The first part will be a closed book, no calculator questions, probably ~ 20 - 60 points.

The second part will be a open book, open notes, with calculator problems. 4 or 5 problems, probably 100 - 140 points.
The whole exam will be worth 160 points.

The exam will cover

Possible questions

1. Material from Exam 1 and Exam 2
 Study the questions from exam 1 and 2

2. HW 1 AC steady-state review, used extensively throughout class

3. HW 2 RMS & Single-phase AC power. Possibly part of 3φ problem
 Basic relationships and units
 P Q S |S| pf correction of pf

4. HW 3 Energy sources, plant efficiencies
 Lots possible

5. HW 4 & 5 3-phase AC power.
 Basic magnitude and phase relationships
 \[
 V_L \ V_{LL} \ V_{LN} \ I_L \ I_{LL} \ I_Y \ S_{3\phi} \ S_{1\phi} \\
 Z_Y = \frac{Z_\Delta}{3} \quad Z_\Delta = 3'Z_Y \quad pf \ correction \ of \ pf
 \]

6. HW 6 Magnetic circuits
 Flux density, Field intensity, Permeability, B-H curve. effects of nonlinearity on some currents (3rd harmonic).
 \[
 B = \mu \cdot H \quad H = \frac{N \cdot i}{l \cdot m}
 \]

7. HW 7 - 9 Transformers
 Calculations
 Impedance transformation
 OC & SC Tests --> model
 \eta \ & \ VR
 Autotransformers
 3φ Transformers Δ & 3rd harmonic
 Autotransformers questions

ECE 3600 Final Exam Study Guide
8. **HW SG1 & SG2 Synchronous generators and motors**
 Know the phasor diagram!

9. **HW Ind1 - Ind3 Induction motors**
 Know the model!
 Powers P_{AG}, P_{conv}, P_{out} etc. η
 Torque & speeds
 Types & effect of R_2
 Single phase motors

10. **HW DC1 - DC2 DC motors**
 Know the model!
 Powers P_{conv}, P_{out} etc. η
 Torque & speeds
 Series-wound & universal motors

11. **HW TL1 Transmission Lines**
 Short, Med, Long
 Series impedance Z_{series}
 Shunt admittance & $\frac{Y_{shunt}}{2}$
 Shunt impedance & $2 \cdot Z_{shunt}$
 Common line voltages
 Short, Med, Long mi, km
 Surge impedance
 Surge impedance loading
 What is & why use bundling
 Models and calculations

12. All Labs

13. All Field trips

Bolded items are more likely