1. $\mathbf{Z}=|\mathbf{Z}| \cdot e^{-j \cdot 30 \cdot d e g} \quad$ We don't know its magnitude, but its phase angle is -30°.
\mathbf{Z} is made of a 100Ω resistor in series with one other part. What is the part? type and value?
$\mathrm{f}:=60 \cdot \mathrm{~Hz}$
$\omega:=2 \cdot \pi \cdot 60 \cdot \mathrm{~Hz}$

2. The circuit shown has two sources. The frequency of the current source is the third harmonic of the voltage source. Using superposition, find the current $\mathrm{i}_{1}(\mathrm{t})$. Be sure to redraw the cicuit twice as part of your solution.

3. a) In the circuit below R_{L} is the load resistor. Find and ECE 3600 homework 2B p3 draw the Thevenin equivalent of the rest of the circuit.

ECE 3600 homework 2B p4

b) Use the Thevenin equivalent to find the current through the load resistor and the voltage across the load resistor.
c) Find a replacement for R_{L} in order to maximize the power delivered to R_{L}.
d) Find the new current and voltage for the load resistor.

Answers

1. $45.9 \cdot \mu \mathrm{~F}$
2. $\mathrm{i}_{1}(\mathrm{t}):=239 \cdot \mathrm{~mA} \cdot \cos (\omega \cdot \mathrm{t}-5.5 \cdot \mathrm{deg})+96.1 \cdot \mathrm{~mA} \cdot \cos (3 \cdot \omega \cdot \mathrm{t}+94.7 \cdot \mathrm{deg})$

ECE 3600
3. a)

89.2 /-16.9${ }^{\circ} \mathrm{V}$
c) 5.844Ω
d) $10.1 \mathrm{I}-29.4^{\circ} \mathrm{A}$ 59.1 /-29.4o V

