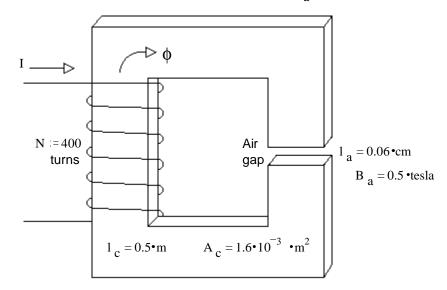

Due: Sat, 2/3/24

1. Textbook problem 1-7 (p49)

A two-legged core is shown in below. The winding on the left leg of the core (N_1) has 600 turns, and the winding on the right (N_2) has 200 turns. The coils are wound in the directions shown in the figure. If the dimensions are as shown, then what flux would be produced by currents $i_1 = 0.5 \text{ A}$ and $i_2 = 1.00 \text{ A}$? Assume $\mu_r = 1000$ and constant.

2. Textbook Example 1-2 (p20) with:


ECE 3600 Homework 6 p2

Mean magnetic length: $l_c = 50 \cdot cm$ Air gap length: $l_a = 0.06 \cdot cm$

Core cross-sectional area: $A_c = 16 \cdot \text{cm}^2$ Relative permeability of core: $\mu_r = 4000$

Effective air-gap cross-sectional area is 5% more than the core.

- b) Find the required current so that the flux density of in the air gap is: $B_a = 0.5 \cdot tesla$ I = ?

