Name:		ECE 3600	homework	TL2 Du	ie: Sat	, 4/6/24	ext
1. If the voltage at the r to raise the voltage?	eceiving-end of a transn	nission line is too	low, what can th	e power compa	any do at th	e receiving-	end
2. If the voltage at the r lower the voltage?	eceiving-end of a transn	nission line is too	high, what can t	he power comp	any do at tl	ne receiving	-end to
3. Why and/or where a	re HVDC used?						
4. What is the purpose Where are they	of phase-shifting transfo	ormers?					
5. 9-12 What is the sign	nificance of the angle δ b	between $\mathbf{V_{S}}$ and $\hat{\mathbf{V}}$	$\mathbf{V_R}$ in a transmiss	sion line?			

Problems

ECE 3600 homework TL2 p2

1. A 230 kV transmission line is 70 km long and has line parameters shown in "Transmission Line typical Values" table in "Transmission Line Notes" handout (p6). $|\mathbf{V_{SLL}}|$ is 230 kV. Assume the phase angle of $|\mathbf{V_S}|$ is $|\mathbf{V_S}|$ is $|\mathbf{V_{SLL}}|$ is 230 kV. Assume the phase angle of $|\mathbf{V_S}|$ is $|\mathbf{V_S}|$ is $|\mathbf{V_{SLL}}|$ is 230 kV.

From Table: $r := 0.055 \ \Omega/km \quad x := 0.489 \ \Omega/km \quad y := j \cdot \left(3.373 \cdot 10^{-6}\right) \ S/km$ Assume: g := 0 S/km

a) The source provides $170~\rm MVA$ at $0.8 \rm pf$ (lagging) to the source end of the transmission line. Use the short-length model to find $\bf I_R$ and $\bf V_R$.

b) What is the angle δ ?

c) What is the power factor of the load?

2. 9-11 A 138 kV, 200 MVA, 60 Hz, three-phase, power transmission line is 100 km long, and has the following characteristics:

$$r := 0.103 \cdot \frac{\Omega}{l_{cm}}$$

$$x = 0.525 \cdot \frac{\Omega}{km}$$

$$r:=0.103\cdot\frac{\Omega}{km} \hspace{1cm} x:=0.525\cdot\frac{\Omega}{km} \hspace{1cm} y:=j\cdot\left(3.3\cdot10^{-6}\right)\cdot\frac{S}{km} \hspace{1cm} len:=100\cdot km$$

a) What is per phase series impedance and shunt admittance of this transmission line?

Series impedance:

Shunt admittance:

Shunt impedance:

- b) Should it be modeled as a short, medium, or long transmission line?
- d) Sketch the phasor diagram of this transmission line when the line is supplying rated voltage and apparent power at a 0.90 power factor lagging.
- e) Calculate the sending-end voltage if the line is supplying rated voltage and apparent power at 0.90 PF lagging.

- f) What is the voltage regulation of the transmission line for the conditions in (e)?
- g) What is the efficiency of the transmission line for the conditions in (e)?
- h) 9-13 What is the "power angle", δ ?

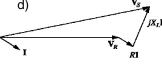
- **ECE 3600** homework TL2 p4 3. 9-12 If the series resistance and shunt admittance of the transmission line in Problem 9-11 are ignored, what would the value of the angle δ be at rated conditions and 0.90 PF lagging?
- 4. A 765 kV transmission line is 200 km long and has line parameters shown in Table 4.1, p.4-10. Use the medium-length model to find V_S and I_S if the line is loaded to 1800~MVA and $|V_{RLL}|$ is 770~kV. Assume the phase angle of $|V_R|$ is 0° and assume load pf = 1.

Answers

1. a) 426.7·A <u>/</u> - 36.87·deg

123.2·kV / - 4.98·deg

b) 4.98·deg


c) 0.849

3. 21.8·deg

4. 443 kV /12.0° 1375 A /18.56°

ECE 3600 homework TL2 p4 2. a) $(10.3 + j \cdot 52.5) \cdot \Omega$ j.0.00033.S

b) medium

g) 89.3·%