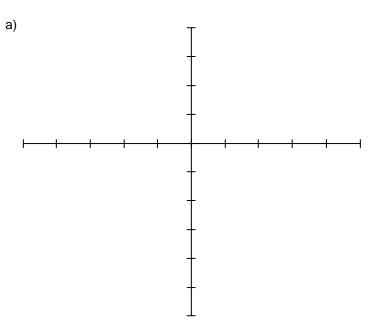

ECE 3600 Homework 4

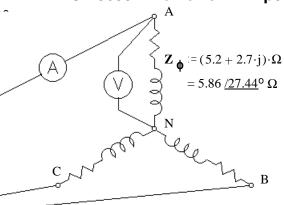
С

Note: All voltages and currents are always assumed to be RMS unless said to be otherwise.


- 1. The following are questions from p 78 of the textbook. These could be good closed-book exam questions.
 - a) 2.1. What types of connections are possible for three-phase generators and loads?
 - b) 2.2. What is meant by the term "balanced" in a balanced three-phase system?
 - c) 2.3. What is the relationship between phase and line voltages and currents for a wye (Y) connection?
 - d) 2.4. What is the relationship between phase and line voltages and currents for a delta (Δ) connection?
 - e) 2.5. What are the two phase sequences?
 - f) 2.7. What is a Y- Δ transform?
- 2. Textbook 2-1. Three impedances of $4+j3~\Omega$ are Δ -connected and tied to a three-phase 208-V power line. Find I_{o} , I_{L} , P, Q, S (|S|), and the power factor of this load.

3. a) A balanced three-phase 480-V source (three line-to-neutral voltages of 277 V) supplies a balanced three-phase inductive load. The load draws a total of 9 kW at a power factor of 0.9. Calculate the phase currents and the magnitude of the per-phase load impedances, assuming a Y-connected load. Draw a phasor diagram showing all three voltages and currents, assume V_a is 0°.

b) In order to correct the power factor, three capacitors are connected in parallel with the load impedances. $\omega = 377 \cdot \frac{rad}{sec}$ Find the value of the capacitors.


4. Repeat problem 3, assuming a delta-connected load. Make sure you are clear about the phase angle of ${\bf I_{ab}}.$

5. The voltmeter shown measures 120 V. Let this voltage be the phase reference (0°). The phase impedance is $\mathbf{Z_{\phi}} = 5.2 + j2.7 = 5.86 / 27.44$ ° C.

ECE 3600 Homework 4 p3

a) What is V_{AB} as a phasor?

- b) What would the ammeter measure?
- c) What is the apparent power?
- d) What is the real power?

e) Correct the power factor with capacitors connected in a delta configuration, that is, find the value of the capacitors.

$$\omega := 377 \cdot \frac{\text{rad}}{\text{sec}}$$

- 6. Three 230-V generators are connected in a wye configuration to generate three-phase power. The load consists of three balanced delta-connected impedances of Z_L = 3.8 + jl.5 Ω .
 - a) An ammeter is placed in one line, what would it measure?
 - b) Find the total apparent power.

c) Find the total real power consumed by the load.

d) What is the phase angle between I_A and V_{AB} , assuming ABC rotation?

Answers

- b) 2.2. The 3 voltages are equal, the 3 currents are equal and the 3 loads are equal. 1. a) 2.1. Υ & Δ
 - c) 2.3. $V_{\phi} = \frac{V_{LL}}{\sqrt{3}} = \frac{V_L}{\sqrt{3}}$ $I_{\phi} = I_L$ d) 2.4. $V_{\phi} = V_{LL} = V_L$ $I_{\phi} = \frac{I_L}{\sqrt{3}}$ e) 2.5. abc or acb f) 2.7. $\mathbf{Z}_{\mathbf{Y}} = \frac{\mathbf{Z}_{\Delta}}{3}$ 2. 41.6A·A 72.1·A 20.8·kW

- 3. $12 \cdot A$ lagging by 25.8° 23·Ω
 - b) 50.2·μF

- $69.1 \cdot \Omega$
- 6.95A

- 5. a) 208·V·e^{j·30·deg}
- b) 20.5·A
- c) 7.37·kVA
- d) 6.54·kW

- 6. 168·A 117·kVA
- 108·kW -51.541 °

e) 69.5·µF