Name

1. 5.7 A $500 / 200-\mathrm{V}, 30-\mathrm{kVA}$ transformer is reconnected as a $700 / 500-\mathrm{V}$ autotransformer. Compute the new kVA rating of the device.

Normal 500/200-V transformer

2. Show connections to the following 100/40-V, 200-VA transformers to get the voltage ratios desired. Compute the new VA rating of each connection.
a) $140 / 40 \mathrm{~V}$
b) $140 / 100 \mathrm{~V}$

c) $60 / 40 \mathrm{~V}$
d) $60 / 100 \mathrm{~V}$

3. 5.8 The terminals of a 500/200-V transformer can be interconnected in four different ways, two of which will result in a 700/500-V autotransformer. Assume that you have interconnected the windings in the wrong way, but that you believe that you did it the right way. In other words, you think that you have a 700/500-V autotransformer when in fact you have something else. As you now connect the " $700-\mathrm{V}$ terminals" of your device to a $700-\mathrm{V}$ source, you expect to obtain $500-\mathrm{V}$ between what you presume to the " $500-\mathrm{V}$ terminals." To your surprise you get an entirely different voltage.

500/200-V, 30-kVA transformer reconnected CORRECTLY as a 700/500-V autotransformer at maximum voltages and currents:

Show a possible INCORRECT connection:

a) What voltage do you get?
b) What will happen to your transformer with this kind of treatment?
4. a) Draw a per-phase drawing of for the balanced 3 -phase, $60-\mathrm{Hz}$ system shown. You may neglect phase issues introduced by $Y-\Delta$ and $\Delta-Y$ connections. You may need to modify the turns ratio of the transformer to reflect $Y-\Delta$ and $\Delta-Y$ connections. Be sure to show values of the source, passive components and turns ratio on your drawing.

b) Find $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$ incuding phase angle Modify turns ratio to reflect $\Delta-Y$ transformer connection
5. The configuration shown is called the "open-delta" or "V" connection, for obvious reasons. Identical 2:1 transformers are used.
a) Show that if $A B C$ is $480-\mathrm{V}$ balanced three phase, abc is $240-\mathrm{V}$ balanced three-phase. Consider the ABC voltages to be a three-phase set and prove the abc set is three-phase.

b) If the load is 30 kVA , find the required kVA rating of the transformers to avoid overload.
[You can solve this independent of part a)]
6. The configuration shown is called the "T" connection. For this connection, the $2: 1$ transformers are not identical but have different voltage and kVA ratings. The bottom transformer is center-tapped so as to have equal, in-phase voltages for each half.
a) Show that if ABC is $480-\mathrm{V}$ balanced three phase, abc is $240-\mathrm{V}$ balanced three-phase. Consider the ABC voltages to be a three-phase set and prove the abc set is three-phase.

b) If the load is 30 kVA , find the required kVA rating of each transformer to avoid overload.

ECE 3600 homework 9 p6

7. A phase-shifting transformer has a complex turns ratio of $\mathbf{t}:=4 \cdot \mathrm{e}^{\mathrm{j} \cdot 20 \cdot \mathrm{deg}}=4 \underline{/ 20}^{\circ}$

It has a series impedance of $\quad \mathbf{Z}_{\mathbf{S}}:=(0.05+\mathrm{j} \cdot 0.6) \cdot \Omega$
Find the admittance matrix of this tranformer (see the last page of the transformer notes).

$$
\mathbf{Y}_{\mathbf{S}}:=\frac{1}{\mathbf{Z}_{\mathbf{S}}}=
$$

$$
\left[\begin{array}{cc}
\mathbf{Y}_{\mathbf{S}} & -\frac{\mathbf{Y}_{\mathbf{S}}}{\mathbf{t}} \\
-\frac{\mathbf{Y}_{\mathbf{S}}}{-} & \frac{\mathbf{Y}_{\mathbf{S}}}{(|\mathbf{t}|)^{2}}
\end{array}\right]=[\quad] \frac{\frac{1}{\Omega}}{\square}
$$

Answers

5. a) Calculate $\mathbf{V}_{\mathbf{b c}}$ from the other two voltages and show that it has the correct magnitude and correct phase angle.
b) $17.3 \cdot \mathrm{kVA}$ per transformer, $\quad 34.6 \cdot \mathrm{kVA}$ for both
6. a) $415 \cdot 7 \cdot \mathrm{~V} \quad 480 \cdot \mathrm{~V} \quad$ b) $15 \cdot \mathrm{kVA} \quad 17.3 \cdot \mathrm{kVA} \quad 32.3 \cdot \mathrm{kVA}$ for both
7. $\left(\begin{array}{cc}0.138-1.655 \cdot j & 0.109+0.401 \cdot j \\ -0.174+0.377 \cdot j & 8.621 \cdot 10^{-3}-0.103 \cdot j\end{array}\right) \cdot \frac{1}{\Omega}$

