Name:

1. One phase of a balanced 3-phase system is shown here.

A fault occurs point F. It is a short between lines b and c with an impedance of \mathbf{Z}_{f}.
a) Draw the circuit you would have to analyze to find the fault current. Identify the parts and Include the component voltages and currents at the fault.
b) Set up a mathematical expression (or expressions) to find the fault current. (don't forget j \& that the fault current is NOT \mathbf{I}_{Al})
2. Consider this power system. Same as the example in the notes, except for $\mathbf{V}_{\mathbf{1}}$ and $\mathrm{X}_{\mathrm{tr} 0}$.

There is a phase-A single-line to ground (SLG) fault with a fault impedance of $\quad \mathbf{Z}_{\mathbf{f}}:=0.15 \cdot \mathrm{pu} \quad \underline{10}^{\circ}$
Find the fault current. You may be able to use some numbers already calculated in the example

Answers

2. $4.69 \cdot \mathrm{pu} /-45.7^{\circ}$
3. $5.016 \cdot \mathrm{pu} \quad \underline{I^{-46.85}}{ }^{\circ}$
b) define

$\mathbf{I}_{\mathbf{S}}=\frac{\mathbf{E}^{\prime \prime}}{\left(\mathrm{X}^{\prime \prime}{ }_{\mathrm{S} 1}+\mathrm{X}_{\mathrm{D} 1}+\mathrm{X}_{\mathrm{L} 1}\right) \cdot \mathbf{j}+\left(\frac{1}{R_{\text {Load1 }}}+\frac{1}{\mathbf{Z}_{\mathbf{X}}}\right)}$
$\mathbf{I}_{\text {fault }}=\mathbf{I}_{\mathbf{B}}=\mathbf{a}^{2} \cdot \mathbf{I}_{\mathrm{A} 1}+\mathbf{a} \cdot \mathbf{I}_{\mathrm{A} 2}=\left(\mathbf{a}^{2}-\mathbf{a}\right) \cdot \mathbf{I}_{\mathrm{A} 1}=\sqrt{3} /-90^{\circ} \mathbf{I}_{\mathrm{A} 1}$
ECE 3600 homework LF2 p3

ECE 3600 homework LF2 p4

3. Repeat problem 2 if before the fault, the load was zero, that is, $\mathbf{P}_{\text {Load }}=0$ and $R_{\text {Load }}:=\infty$ hint: this problem is considerably easier now
