

c) Determine the synchronous reactance of the machine.

d) For the same real power, what magnitude of excitation voltage yields unity power factor?

- 2. 4.41. A cylindrical-rotor, 60-Hz, Y-connected, three-phase, 12-pole synchronous motor operates from 2300 V and produces 500 hp. The motor operates with unity power factor with an excitation voltage of $E_A = 1620$ V per phase. Neglect losses. Determine the following:
 - a) The current.
 - b) The synchronous reactance.

c) The torque.

d) The rotor power angle.

- c) What is the power factor and is it leading or lagging?
- d) Determine the synchronous reactance per phase.

<u>Answers</u> 1. a) motor	b) 132.8·V	7.97·kVA	c) 2·Ω	d) E _A =138·V		
2. a) 93·6·A	b) 9.92·Ω	c) 5934·N·m	d) 34.95.deg			
3. a) underexcitedd) 5.83·Ω	b) - 50·deg e) 11·hp 87·N·r	c) 0.939 lagging n		ECE 3600	homework SG3	p2