Ex. 1

A.Stolp

10/25/11 rev10/9/14, 10/3/22

The synchronous reactance is $50 \Omega /$ phase. The generator emf is 3 kV . Find the following.
a) The power angle, δ.
b) The total reactive power generated.

$$
\mathrm{Q}_{1 \phi}=\frac{\mathrm{V}_{\phi} \cdot \mathrm{E}_{\mathrm{A}} \cdot \cos (\boldsymbol{\delta})-\mathrm{V}_{\phi}{ }^{2}}{\mathrm{X}_{\mathrm{s}}} \quad \mathrm{Q}_{3 \phi}=3 \cdot \frac{\mathrm{~V}_{\phi} \cdot \mathrm{E}_{\mathrm{A}} \cdot \cos (\boldsymbol{\delta})-\mathrm{V}_{\phi}{ }^{2}}{\mathrm{X}_{\mathrm{s}}}=85.83 \cdot \mathrm{kVAR}
$$

c) Find a new magnitude of the generator emf so that $\mathrm{Q}:=45 \cdot \mathrm{kVAR}$

$$
\begin{array}{ll}
\mathrm{Q}_{1 \phi}:=\frac{\mathrm{Q}}{3} & \mathrm{~S}_{1 \phi}:=\sqrt{\mathrm{P}_{1 \phi}^{2}+\mathrm{Q}_{1 \phi}^{2}} \\
\mathrm{I}_{\mathrm{A}}:=\frac{\mathrm{S}_{1 \phi}}{\mathrm{~V}_{\phi}} & \mathrm{I}_{\mathrm{A}}=14.52 \cdot \mathrm{~A} \\
\theta:=\operatorname{atan}\left(\frac{\mathrm{Q}_{1 \phi}}{\mathrm{P}_{1 \phi}}\right) & \theta=26.57 \cdot \mathrm{deg}
\end{array}
$$

Notice that θ is positive in the downward direction, contrary to the notes. Also notice how that affects the figure at left. Know what you're doing, don't just use formulas!
by Pythagorean theorem: $\quad \mathrm{E}_{\mathrm{A}}:=\sqrt{\left(\mathrm{V}_{\phi}+\mathrm{X}_{\mathrm{S}} \cdot \mathrm{I}_{\mathrm{A}} \cdot \sin (\theta)\right)^{2}+\left(\mathrm{X}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{A}} \cdot \cos (\theta)\right)^{2}} \quad \mathrm{E}_{\mathrm{A}}=2.713 \cdot \mathrm{kV}$
OR $\quad \mathbf{I}_{\mathbf{A}}:=\mathbf{I}_{\mathrm{A}} \mathrm{e}^{\cdot \mathrm{e}^{-(\mathrm{j} \cdot \theta)}}$
$\mathbf{E}_{\mathbf{A}}:=\mathrm{V}_{\boldsymbol{\phi}}+\mathbf{I}_{\mathbf{A}} \cdot\left(\mathrm{j} \cdot \mathrm{X}_{\mathrm{s}}\right)$
$\mathrm{E}_{\mathrm{A}}=\left|\mathbf{E}_{\mathbf{A}}\right|=2713 \cdot \mathrm{~V} \quad \delta=\arg \left(\mathbf{E}_{\mathbf{A}}\right)=13.851 \cdot \operatorname{deg}$
d) The shaft speed.
$\mathrm{n}:=\frac{7200 \cdot \mathrm{rpm}}{\mathrm{N}_{\text {poles }}}$
$\mathrm{n}=1800 \cdot \mathrm{rpm}$
$\omega_{\mathrm{m}}:=\mathrm{n} \cdot \frac{2 \cdot \pi \cdot \mathrm{rad}}{\mathrm{rev}} \cdot\left(\frac{\mathrm{min}}{60 \cdot \mathrm{sec}}\right) \quad \omega_{\mathrm{m}}=188.496 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$

OR $\quad \omega_{\mathrm{m}}=\frac{\left(377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}\right)}{\left(\frac{\mathrm{N}_{\text {poles }}}{2}\right)}=188.5 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
e) The shaft torque.
Often called the
"Prime-mover torque"
$P_{3 \phi}=\omega \cdot \mathrm{T}$

$$
\mathrm{T}:=\frac{\mathrm{P}_{3 \phi}}{\omega_{\mathrm{m}}}
$$

$\mathrm{T}=477.5 \cdot \mathrm{~N} \cdot \mathrm{~m}$
f) The shaft torque is decreased to half the value found in part e). What is the new P and Q ?

$$
\mathrm{P}_{3 \phi}^{\prime}:=\frac{1}{2} \cdot \mathrm{P}_{3 \phi} \quad \mathrm{P}^{\prime}{ }_{3 \phi}=45 \cdot \mathrm{~kW} \quad \delta:=\operatorname{asin}\left(\frac{\mathrm{P}^{\prime} 3 \phi^{\prime} \cdot \mathrm{X}_{\mathrm{s}}}{3 \cdot \mathrm{~V}_{\phi} \cdot \mathrm{E}_{\mathrm{A}}}\right) \quad \delta=6.87 \cdot \mathrm{deg}
$$

$$
\mathrm{Q}_{3 \phi}=3 \cdot \frac{\mathrm{~V}_{\phi} \cdot \mathrm{E}_{\mathrm{A}} \cdot \cos (\delta)-\mathrm{V}_{\phi}^{2}}{\mathrm{X}_{\mathrm{s}}}=53.23 \cdot \mathrm{kVAR}
$$

$$
\begin{aligned}
& \text { givens } \mathrm{f}:=60 \cdot \mathrm{~Hz} \quad \mathrm{~N}_{\text {poles }}:=4 \quad \begin{array}{l}
\text { Assume } \mathrm{Y} \text {-connected: } \\
\text { Otherwise } \mathrm{E}_{\mathrm{A}} \text { would be very low. }
\end{array} \mathrm{V}_{\phi}:=\frac{4 \cdot \mathrm{kV}}{\sqrt{3}} \\
& \mathrm{X}_{\mathrm{S}}:=50 \cdot \Omega \quad \mathrm{E}_{\mathrm{A}}:=3 \cdot \mathrm{kV} \quad \mathrm{P}_{3 \phi}:=90 \cdot \mathrm{~kW} \\
& \mathrm{P}_{1 \phi}:=\frac{\mathrm{P}_{3 \phi}}{3} \quad \mathrm{P}_{1 \phi}=30 \cdot \mathrm{~kW}=\frac{\mathrm{V}_{\phi} \cdot \mathrm{E}_{\mathrm{A}} \cdot \sin (\delta)}{\mathrm{X}_{\mathrm{S}}} \quad \delta:=\operatorname{asin}\left(\frac{\mathrm{P}_{1 \phi} \cdot \mathrm{X}_{\mathrm{S}}}{\mathrm{~V}_{\phi} \cdot \mathrm{E}_{\mathrm{A}}}\right) \quad \delta=12.5 \cdot \mathrm{deg}
\end{aligned}
$$

(F09 Fin) You make the following measurements on a 3-phase, Y-connected, synchronous generator.
$\mathrm{P}_{3 \phi}:=120 \cdot \mathrm{~kW}$
$\mathrm{V}_{\mathrm{LL}}:=480 \cdot \mathrm{~V}$
$\mathrm{I}_{\mathrm{L}}:=160 \cdot \mathrm{~A}$
$\mathrm{X}_{\mathrm{S}}:=1.2 \cdot \Omega$

Unfortunately, you don't know the phase angle of current.
a) Draw a phasor diagram of one of the two possible interpretations of these numbers.

Find the induced armature voltage $\left(\mathrm{E}_{\mathrm{A}}\right)$ and the power angle, $\delta . \quad \mathrm{E}_{\mathrm{A}}=? \quad \delta=$?
My first assumption: $\quad I_{L}$ leads V_{T}

b) Draw a phasor diagram of other possible interpretation of these numbers.

Find the induced armature voltage $\left(\mathrm{E}_{\mathrm{A}}\right)$ and the power angle, $\delta . \quad \delta=$?

Produces positive Q
$\mathbf{E}_{\mathbf{A}}:=\mathrm{V}_{\mathrm{T}}+\mathbf{I}_{\mathbf{L}} \cdot\left(\mathrm{j} \cdot \mathrm{X}_{\mathrm{s}}\right)$
$\mathrm{E}_{\mathrm{A}}=\left|\mathbf{E}_{\mathbf{A}}\right|=399.48 \cdot \mathrm{~V}$
$\delta=\arg \left(\mathbf{E}_{\mathbf{A}}\right)=25.695 \cdot \mathrm{deg}$
c) A traveling carnival uses a combination of this generator and the local power company to run its load, mainly induction motors. When the generator is connected to the carnival's power distribution network, it supplies half of the required power, but the current from the power company only decreases by about 30%. Which of the calculations above is most likely correct?

Assumption in a)
Give me the reasoning behind your answer (no calculations required).
The induction motors represent a lagging pf load, they use lots of VARs. If the local generator were supplying those VARs, then the current would go down by about half and quite possibly more. The small reduction in current implies that the generator also consumes VARs (creates negative VARs). That is condition a).
d) What do you change at the generator to reduce the current flow from the power company?

Tell me what you adjust and if you turn it up or down.
Turn up the field current.

Ex. 3

A 60 Hz , 2-pole, Y-connected, 3-phase synchronous generator supplies 15 MW of power to a 18 kV bus. The synchronous reactance is $6 \Omega /$ phase. The magnitude of the generator emf equals the magnitude of the bus voltage.
givens $\quad \mathrm{V}_{\phi}:=\frac{18 \cdot \mathrm{kV}}{\sqrt{3}}$
$\mathrm{V}_{\phi}=10.392 \cdot \mathrm{kV}$
$X_{s}:=6 \cdot \Omega$
$\mathrm{P}_{1 \phi}:=\frac{15 \cdot \mathrm{MW}}{3}$
$\mathrm{P}_{1 \phi}=5 \cdot \mathrm{MW}$
$\mathrm{E}_{\mathrm{A}}:=\mathrm{V}_{\phi}$

Find:
a) The power angle, $\delta . \quad \mathrm{P}_{1 \phi}=\frac{\mathrm{E}_{\mathrm{A}} \cdot \mathrm{V}_{\phi}}{\mathrm{X}_{\mathrm{S}}} \cdot \sin (\delta) \quad \delta:=\operatorname{asin}\left(\frac{\mathrm{P}_{1 \phi} \cdot \mathrm{X}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{A}} \cdot \mathrm{V}_{\phi}}\right) \quad \delta=16.13 \cdot \mathrm{deg}$
b) The complex phase current, (Assume the bus voltage phase angle is 0°).
c) The magnitude and direction of reactive power.

$$
\mathrm{I}_{\mathrm{A}}:=\frac{\mathrm{P}_{1 \phi}}{\mathrm{~V}_{\phi} \cdot \cos (\theta)} \quad \mathrm{I}_{\mathrm{A}}=485.9 \cdot \mathrm{~A}
$$

$$
\mathrm{Q}_{3 \phi}:=3 \cdot \mathrm{~V}_{\phi} \cdot \mathrm{I} A \cdot \sin (-\theta)
$$

$$
\mathrm{Q}_{3 \phi}=-2.125 \cdot \mathrm{MVAR}
$$

Since the current leads the voltage, this generator absorbs reactive power (produces -VARs)

Ex. 4

A $60-\mathrm{Hz}$, three-phase, 6-pole, Δ-connected synchronous motor is connected to 480 V and produces 80 hp . The motor draws minimum current with an excitation voltage of $\mathrm{E}_{\mathrm{A}}=520 \mathrm{~V}$ per phase. Mechanical losses are 5hp .

$$
\text { givens } \quad N_{\text {poles }}:=6
$$

$\mathrm{V}_{\phi}:=480 \cdot \mathrm{~V}$
$\mathrm{P}_{3 \phi}:=80 \cdot \mathrm{hp}+5 \cdot \mathrm{hp}$
$\mathrm{E}_{\mathrm{A}}:=520 \cdot \mathrm{~V}$

Determine the following:
a) The current.

Minimum current implies pf $:=1$ so...
b) The line current. $\mathrm{I}_{\mathrm{L}}:=\sqrt{3} \cdot \mathrm{I}_{\mathrm{A}}$
$\mathrm{P}_{1 \phi}:=\frac{85 \cdot \mathrm{hp}}{3} \cdot \frac{745 \cdot 7 \cdot \mathrm{~W}}{\mathrm{hp}}$
$\mathrm{P}_{1 \phi}=21.1 \cdot \mathrm{~kW}$

$$
\mathrm{I}_{\mathrm{A}}:=\frac{\mathrm{P}_{1 \phi}}{\mathrm{~V}_{\phi}} \quad \mathrm{I}_{\mathrm{A}}=44.02 \cdot \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{L}}=76.24 \cdot \mathrm{~A}
$$

c) The synchronous reactance.
by Pythagorean theorem: $\mathrm{I}_{\mathrm{A}} \cdot \mathrm{X}_{\mathrm{S}}=\sqrt{\mathrm{E}_{\mathrm{A}}{ }^{2}-\mathrm{V}_{\phi}{ }^{2}}$

d) The torque.

$$
\omega_{\text {mech }}:=\frac{4 \cdot \pi \cdot f}{\mathrm{~N}_{\text {poles }}}
$$

$$
X_{S}:=\frac{\sqrt{\mathrm{E}_{\mathrm{A}^{2}-\mathrm{V}_{\phi}^{2}}}}{\mathrm{I}_{\mathrm{A}}} \quad \mathrm{X}_{\mathrm{S}}=4.544 \cdot \Omega
$$

e) The rotor power angle.

$$
\begin{gathered}
\mathrm{T}_{\text {mech }}=\frac{80 \cdot \mathrm{hp} \cdot \frac{745.7 \cdot \mathrm{~W}}{\mathrm{hp}}}{\omega_{\text {mech }}}=47 \\
\delta=\operatorname{acos}\left(\frac{\mathrm{V}_{\phi}}{\mathrm{E}_{\mathrm{A}}}\right)=22.62 \cdot \operatorname{deg}
\end{gathered}
$$

f) The maximum power this motor could provide at this excitation voltage. $\delta:=90 \cdot \mathrm{deg} \quad \mathrm{P}_{3 \phi}=3 \cdot \frac{\mathrm{E}_{\mathrm{A}} \cdot \mathrm{V}_{\phi}}{\mathrm{X}_{\mathrm{S}}} \cdot \sin (\delta) \cdot \frac{1 \cdot \mathrm{hp}}{745.7 \cdot \mathrm{~W}}-5 \cdot \mathrm{hp}=216 \cdot \mathrm{hp} \quad \begin{aligned} & \text { Note: The current rating of the motor } \\ & \text { may be exceeded at this load. }\end{aligned}$
(F09 E2, p4) An industrial plant is powered from a 480-V, 3-phase bus and currently draws 60 kW at a power factor of 0.8 lagging. A new mill is to be added at the plant. This mill requires a shaft torque of 600 Nm at 1200 rpm . Your job is to specify a motor which will run the mill and correct the plant power factor at the same time. Be sure to specify the type of motor including the number of poles. Tell me how the motor should be connected to the bus (This is an arbitrary decision here, but it will affect many of your other answers). Specify its minimum hp, voltage, and current ratings. Tell me what the back emf should be. You may assume the synchronous reactance is $1 \Omega /$ phase and that losses are negligible.

Plant, as is:

$$
\begin{aligned}
& \mathrm{P}_{3 \phi}:=60 \cdot \mathrm{~kW} \\
& \mathrm{~S}_{1 \phi}:=\frac{\mathrm{P}_{1 \phi}}{\mathrm{pf}}
\end{aligned}
$$

$$
P_{1 \phi}:=\frac{P_{3 \phi}}{3}
$$

$$
\mathrm{P}_{1 \phi}=20 \cdot \mathrm{~kW}
$$

$$
\text { pf }:=0.8
$$

$$
\mathrm{S}_{1 \phi}=25 \cdot \mathrm{kVA}
$$

$$
\mathrm{Q}_{1 \phi}:=\sqrt{\mathrm{S}_{1 \phi}{ }^{2}-\mathrm{P}_{1 \phi}{ }^{2}}
$$

$$
\mathrm{Q}_{1 \phi}=15 \cdot \mathrm{kVAR}
$$

Motor basics

$$
\mathrm{N}_{\text {poles }}:=\frac{7200}{1200} \quad \mathrm{~N}_{\text {poles }}=6 \quad \omega_{\text {mech }}:=\frac{4 \cdot \pi \cdot \mathrm{f}}{\mathrm{~N}_{\text {poles }}} \quad \omega_{\text {mech }}=125.7 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \quad\left(\frac{377}{3}\right)
$$

Use a 6-pole synchronous motor
$\mathrm{T}_{\text {mech }}:=600 \cdot \mathrm{~N} \cdot \mathrm{~m} \quad$ motor power $=\mathrm{P}_{\mathrm{m} 3 \phi}=\mathrm{T}_{\text {mech }} \cdot \omega_{\text {mech }}=75.398 \cdot \mathrm{~kW} \quad 1 \cdot \mathrm{hp}=745.7 \cdot \mathrm{~W}$
$\mathrm{T}_{\text {mech }} \cdot \omega_{\text {mech }} \cdot \frac{1 \cdot \mathrm{hp}}{745.7 \cdot \mathrm{~W}}=101.111 \cdot \mathrm{hp}=$ min hp rating

$$
\mathrm{P}_{\mathrm{m} 1 \phi}:=\frac{\mathrm{T}_{\mathrm{mech}} \cdot \omega_{\mathrm{mech}}}{3} \quad \mathrm{P}_{\mathrm{m} 1 \phi}=25.133 \cdot \mathrm{~kW}
$$

To fix the plant pf,

$$
\mathrm{Q}_{\mathrm{m} 1 \phi}:=-\mathrm{Q}_{1 \phi}
$$

$$
\mathrm{Q}_{\mathrm{m} 1 \phi}=-15 \cdot \mathrm{kVAR}
$$

Phase angle of the current:

$$
\theta:=\operatorname{atan}\left(\frac{-\mathrm{Q}_{\mathrm{m} 1 \phi}}{\mathrm{P}_{\mathrm{m} 1 \phi}}\right)
$$

$$
\theta=30.83 \cdot \mathrm{deg}
$$

If you select Y -connected

$$
\mathrm{V}_{\phi}:=\frac{480 \cdot \mathrm{~V}}{\sqrt{3}}
$$

$\mathrm{V}_{\phi}=277.1 \cdot \mathrm{~V}=$ min voltage rating

Current per phase:

$$
\mathrm{I}:=\frac{\sqrt{\mathrm{P}_{\mathrm{m} 1 \phi^{2}+\mathrm{Q}_{\mathrm{m} 1 \phi}}}}{\mathrm{~V}_{\phi}}
$$

$$
\mathrm{I}=105.61 \cdot \mathrm{~A} \quad=\text { min current rating }
$$

$X_{\mathrm{s}}:=1 \cdot \Omega$
$\Delta \mathbf{V}:=\mathrm{I} \cdot \mathrm{e}^{\mathrm{j} \cdot \theta} \cdot \mathrm{X}_{\mathrm{s}} \cdot \mathrm{j}$
$\Delta \mathbf{V}=-54.127+90.69 \mathrm{j} \cdot \mathrm{V}$
motor back emf

$$
\mathbf{E}_{\mathbf{A}}:=\mathrm{V}_{\phi^{-}}-\Delta \mathbf{V}
$$

$\mathbf{E}_{\mathbf{A}}=331.255-90.69 \mathrm{j} \cdot \mathrm{V} \quad\left|\mathbf{E}_{\mathbf{A}}\right|=343.44 \cdot \mathrm{~V}=$ required
$\delta=\arg \left(\mathbf{E}_{\mathbf{A}}\right)=-15.311 \cdot \operatorname{deg} \quad$ (unneeded)
If you select Δ-connected

$$
\mathrm{V}_{\phi}=480 \cdot \mathrm{~V} \quad=\text { min voltage rating }
$$

Current per phase:

$$
\mathrm{V}_{\phi}:=480 \cdot \mathrm{~V}
$$

$I:=\frac{\sqrt{P_{\mathrm{m} 1 \phi}{ }^{2}+\mathrm{Q}_{\mathrm{m} 1 \phi}}{ }^{2}}{\mathrm{~V}_{\phi}}$
$\mathrm{I}=60.98 \cdot \mathrm{~A}=$ min current rating
$\mathrm{X}_{\mathrm{S}}:=1 \cdot \Omega$
$\Delta \mathbf{V}:=I \cdot e^{j \cdot \theta} \cdot X_{s} \cdot j$
$\Delta \mathbf{V}=-31.25+52.36 \mathrm{j} \cdot \mathrm{V}$
motor back emf
$\mathbf{E}_{\mathbf{A}}:=\mathbf{V}_{\boldsymbol{\phi}}-\boldsymbol{\Delta V}$
$\mathbf{E}_{\mathbf{A}}=511.25-52.36 \mathrm{j} \cdot \mathrm{V}$
$\left|\mathbf{E}_{\mathbf{A}}\right|=513.92 \cdot \mathrm{~V}=$ required

