Single line to ground fault

We will work these out together in class

$$
\left[\begin{array}{l}
\mathbf{I}_{\mathrm{A} 0} \\
\mathbf{I}_{\mathrm{A} 1} \\
\mathbf{I}_{\mathrm{A} 2}
\end{array}\right]=\left[\begin{array}{l}
-3 \\
\frac{3}{3}
\end{array}\right]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{I}_{\mathbf{A}} \\
\mathbf{I}_{\mathbf{B}} \\
\mathbf{I}_{\mathbf{C}}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\mathbf{v}_{\mathrm{A} 0} \\
\mathbf{V}_{\mathrm{A} 1} \\
\mathbf{V}_{\mathrm{A} 2}
\end{array}\right]=\frac{1}{3} \cdot[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{v}_{\mathbf{A}} \\
\mathbf{V}_{\mathbf{B}} \\
\mathbf{V}_{\mathbf{C}}
\end{array}\right]
$$

Sequence-components per-phase drawings of phase A
Thévenin equivalents:

$$
\left[\begin{array}{l}
\mathbf{I}_{\mathrm{A} 0} \\
\mathbf{I}_{\mathrm{A} 1} \\
\mathbf{I}_{\mathrm{A} 2}
\end{array}\right]=\frac{1}{3} \cdot[]=\frac{1}{3} \cdot\left[\quad \frac { 1 } { 3 } \cdot [\begin{array} { l l l }
{ 1 } & { 1 } & { 1 } \\
{ 1 } & { \mathbf { a } } & { \mathbf { a } ^ { 2 } } \\
{ 1 } & { \mathbf { a } ^ { 2 } } & { \mathbf { a } }
\end{array}] \cdot \left[[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{I}_{\mathbf{A}} \\
\mathbf{I}_{\mathbf{B}} \\
\mathbf{I}_{\mathbf{C}}
\end{array}\right]\right.\right.
$$

$$
=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{v}_{\mathbf{A}} \\
\mathbf{v}_{\mathbf{B}} \\
\mathbf{v}_{\mathbf{C}}
\end{array}\right]
$$

Sequence-components per-phase drawings of phase A
Thévenin equivalents:

$$
\left[\begin{array}{l}
\mathbf{V}_{\mathrm{A} 0} \\
\mathbf{V}_{\mathrm{A} 1} \\
\mathbf{V}_{\mathrm{A} 2}
\end{array}\right]=\frac{1}{3} \cdot[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{V}_{\mathbf{A}} \\
\mathbf{V}_{\mathbf{B}} \\
\mathbf{V}_{\mathbf{C}}
\end{array}\right]
$$

Sequence-components per-phase drawings of phase A
Thévenin equivalents:

Now the voltages are measured across the fault point and the "fault" currents are the line currents.

Single line A Open

$$
\left[\begin{array}{c}
\mathbf{V}_{\mathrm{A} 0} \\
\mathbf{V}_{\mathrm{A} 1} \\
\mathbf{V}_{\mathrm{A} 2}
\end{array}\right]=\frac{1}{3} \cdot[]=\frac{1}{3} \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{I}_{\mathrm{A} 0} \\
\mathbf{I}_{\mathrm{A} 1} \\
\mathbf{I}_{\mathrm{A} 2}
\end{array}\right]=\frac{1}{3} \cdot\left[\begin{array}{l}
1 \\
\hline
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot[]
$$

Sequence-components per-phase drawings of phase A

Double line B \& C Open

$$
\left[\begin{array}{l}
\mathbf{v}_{\mathrm{A} 0} \\
\mathbf{v}_{\mathrm{Al}} \\
\mathbf{v}_{\mathrm{A} 2}
\end{array}\right]=\frac{1}{3} \cdot\left[\quad=\frac{1}{3} \cdot\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right][]\left[\begin{array}{l}
\mathbf{I}_{\mathrm{A} 0} \\
\mathbf{I}_{\mathrm{A} 1} \\
\mathbf{I}_{\mathrm{A} 2}
\end{array}\right]=\frac{1}{3} \cdot[\quad]=\frac{1}{3} \cdot\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & \mathbf{a} & \mathbf{a}^{2} \\
1 & \mathbf{a}^{2} & \mathbf{a}
\end{array}\right] \cdot[\right.
$$

Sequence-components per-phase drawings of phase A

$$
\left[\begin{array}{c}
\mathbf{V}_{\mathbf{A}} \\
\mathbf{V}_{\mathbf{B}} \\
\mathbf{V}_{\mathbf{C}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathbf{a}^{2} & \mathbf{a} \\
1 & \mathbf{a} & \mathbf{a}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{V}_{\mathrm{A} 0} \\
\mathbf{V}_{\mathrm{A} 1} \\
\mathbf{V}_{\mathrm{A} 2}
\end{array}\right]
$$

