Figure 5.1
Typical ACSR conductor

54/7 Cardinal

Table A. 4 Characteristics of aluminum cable, steel, reinforced (Aluminum Company of America)

- Based on copper 97%, aluminum 61% conductivity.
t For conductor at $75^{\circ} \mathrm{C}$, air at $25^{\circ} \mathrm{C}$, wind 1.4 miles per hour ($2 \mathrm{ft} / \mathrm{sec}$) frequency $=60 \mathrm{~Hz}$.
\ddagger Current Approx. 75% Capacity" is 75% of the "Approx. Current Carrying Capacity in Amps" and is approximately the current which will produce $50^{\circ} \mathrm{C}$ conductor temp. ($25^{\circ} \mathrm{C}$ rise) with $25^{\circ} \mathrm{C}$ air temp., wind 1.4 miles per hour.

$$
\rho: 100 \%=1.72 \times 10^{-8} \Omega \cdot \mathrm{~m}, 10.37 \mathrm{~cm}, 1 / \mathrm{ft} \quad \begin{aligned}
& \text { CU } 1.77 \times 10^{-8} \mathrm{\Omega} \cdot \mathrm{~m} \\
& 2.83 \times 10^{-8} \Omega \cdot \mathrm{~m}
\end{aligned}
$$

Other conductor types include the all-aluminum conductor (AAC), all-aluminum-alloy conductor (AAAC), aluminum conductor alloy-reinforced (ACAR), and aluminum-clad steel conductor (Alumoweld). There is also a conductor known as "expanded ACSR," which has a filler such as fiber or paper between the aluminum and steel strands. The filler increases the conductor diameter, which reduces the electric field at the conductor surface, to control corona.

EHV lines often have more than one conductor per phase; these conductors are called a bundle. The $765-\mathrm{kV}$ line in Figure 5.2 has four conductors per phase, and the $345-\mathrm{kV}$ double-circuit line in Figure 5.3 has two conductors per phase. Bundle conductors have a lower electric field strength at the conductor surfaces, thereby controlling corona. They also have a smaller series reactance.

Table 5.1 Typical transmission-line characteristics [1, 2]

Figure 5.5
Cut-away view of a standard insulator disc for suspension insulator strings
(Courtesy of Ohio Brass)

EDE 3600 Transmission Line notes pu

QUANTITY	SYMBOL	SI UNITS	ENGLISH UNITS
Resistivity Length	ρ	$\Omega \mathrm{m}$	$\Omega-\mathrm{cmil} / \mathrm{ft}$
Cross-sectional area	ℓ	m	ft
dc resistance	A	m^{2}	cmil
	$\mathrm{R}_{\mathrm{dc}}=\frac{\rho \ell}{\mathrm{A}}$	Ω	Ω

Resistivity depends on the conductor metal. Annealed copper is the international standard for measuring resistivity ρ (or conductivity σ, where $\sigma=1 / \rho)$. Resistivity of conductor metals is listed in Table 5.3. As shown, hard-drawn aluminum, which has 61% of the conductivity of the international standard, has a resistivity at $20^{\circ} \mathrm{C}$ of 17.00Ω-cmil/ft or $2.83 \times 10^{-8} \Omega \mathrm{~m}$.

Table 5.3
\% Conductivity, resistivity. and temperature constant of conductor metals

1. Spiraling $+1-2 \%$ resistance
2. Temperature

$$
\rho_{T_{2}}=\rho_{20}\left(\frac{T_{2}+T}{20^{\circ} C+T}\right)
$$

3. Frequency ("skin effect") $\sim+3 \%$
4. Current magnitude-magnetic conductors

Characteristic impedance

From Wikipedia, the free encyclopedia
The characteristic impedance or surge impedance of a uniform transmission line, usually written Z_{0}, is the ratio of the amplitudes of a single pair of voltage and current waves propagating along the line in the absence of reflections. The SI unit of characteristic impedance is the ohm. The characteristic impedance of a lossless transmission line is purely real, that is, there is no imaginary component $\left(Z_{0}=\left|Z_{0}\right|+j 0\right)$. Characteristic impedance appears like a resistance in this case,

Schematic representation of a transmission line, showing the characteristic impedance Z_{0}. such that power generated by a source on one end of an infinitely long lossless transmission line is dissipated through the line but is not dissipated in the line itself. A transmission line of finite length (lossless or lossy) that is terminated at one end with a resistor equal to the characteristic impedance ($Z_{\mathrm{L}}=$ $\left.Z_{0}\right)$ appears like an infinitely long transmission line to the source.

ECE 3600 Transmission Line notes p4
 Transmission line model

Applying the transmission line model based on the telegrapher's equations, the general expression for the characteristic impedance of a transmission line is:

$$
Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

where
R is the resistance per unit length,
L is the inductance per unit length,
G is the conductance of the dielectric per unit length,
C is the capacitance per unit length,
j is the imaginary unit, and
ω is the angular frequency.

The voltage and current phasors on the line are related by the characteristic impedance as:

$$
\frac{V^{+}}{I^{+}}=Z_{0}=-\frac{V^{-}}{I^{-}}
$$

where the superscripts + and - represent forward- and backward-traveling waves, respectively.

Lossless line

For a lossless line, R and G are Zero so the equation for characteristic impedance reduces to

$$
Z_{0}=\sqrt{\frac{L}{C}}
$$

Surge Impedance Loading

In electric power transmission, the characteristic impedance of a transmission line is expressed in terms of the surge impedance loading (SIL), or natural loading, being the MW loading at which reactive power is neither produced nor absorbed:

$$
S I L=\frac{\left(T_{L-L}\right)^{2}}{Z_{0}}=3 \frac{V_{L N}^{2}}{Z_{0}}=3 \frac{V_{R}^{2}}{Z_{0}}
$$

in which $V_{\mathrm{L}}-\mathrm{L}$ is the line-to-line voltage in volts.
Loaded below its SIL, a line supplies lagging reactive power to the system, tending to raise system voltages. Above it, the line absorbs reactive power, tending to depress the voltage. The Ferranti effect describes the voltage gain towards the remote end of a very lightly loaded (or open ended) transmission line. Underground cables normally have a very low characteristic impedance, resulting in an SIL that is typically in excess of the thermal limit of the cable. Hence a cable is almost always a source of lagging reactive power.

ECE 3600 Transmission Line Typical Values

Table 4-1
Transmission Line Parameters with Bundled Conductors (except at 230 kV) at $60 \mathrm{~Hz}[2,6]$

at 60 Hz [2, 6]			
Nominal Voltage	$R(\Omega / \mathrm{km})$	$\omega L(\Omega / \mathrm{km})$	$\omega C(\mu \Omega / \mathrm{km})$
230 kV	0.055	0.489	3.373
345 kV	0.037	0.376	4.518
500 kV	0.029	0.326	5.220
765 kV	0.013	0.339	4.988

Table 4-2
Surge Impedance and Three-Phase Surge Impedance Loading [2, 6]

Nominal Voltage	$Z_{c}(\Omega)$	$S I L(\mathrm{MW})$ (mVA)
230 kV	375	140 MW
345 kV	280	425 MW
500 kV	250	1000 MW
In $I_{1}(\mathrm{~A})$		
710 A		
1160 A		
1740 AV		

Table 4-3
Loadability of Transmission Lines [6]

short	Line Length (km)	Limiting Factor	Multiple of SIL
	$0-80 \mathrm{~km}$	Thermal	> 3
medium	$80-240 \mathrm{~km}$	5\% Voltage Drop	1.5-3
Long	$240-480 \mathrm{~km}$	Stability	$1.0-1.5$

Typical values for transmission lines taken from:
First Course on Power Systems by Ned Mohan

Long-length Lines: over 240 km (150 miles)

Need:

Units
line length: len , $d \quad m$ or $k m$
Resistance per unit length: \quad r $\quad \frac{\Omega}{\mathrm{m}}$ or $\frac{\Omega}{\mathrm{km}}$
stick to the same unit length for all parameters miles may also be used
Inductance per unit length: $\quad 1 \quad \frac{H}{m}$ or $\frac{H}{k m} \quad$ OR Inductive reactance per unit length: $\quad x \quad \frac{\Omega}{\mathrm{~m}}$ or $\frac{\Omega}{\mathrm{km}}$

Capacitance per unit length: c $\quad \frac{\mathrm{F}}{\mathrm{m}}$ or $\frac{\mathrm{F}}{\mathrm{km}} \quad$ OR Capacitance admittance per unit length: y $\frac{\mathrm{S}}{\mathrm{m}}$ or $\frac{\mathrm{S}}{\mathrm{km}}$
Conductance to ground: \quad g $\quad \frac{\mathrm{S}}{\mathrm{m}}$ or $\frac{\mathrm{S}}{\mathrm{km}}$
Common assumption: $\mathrm{g}:=0 \cdot \frac{\mathrm{~S}}{\mathrm{~km}}$
$\mathrm{S}:=$ siemens

Find:
Surge impedance: $\quad \mathbf{Z}_{\mathbf{c}}=\sqrt{\frac{j \cdot x+r}{j \cdot y+g}}$

Propagation constant:

$$
\gamma=\sqrt{(j \cdot x+r) \cdot(j \cdot y+g)}
$$

$$
\frac{1}{\mathrm{~m}} \text { or } \frac{1}{\mathrm{~km}}
$$

Series impedance $\quad \mathbf{Z}_{\text {series }}=\mathbf{Z}_{\mathbf{c}^{\prime} \cdot \sinh (\gamma \cdot \operatorname{len})}=\mathbf{Z}_{\mathbf{c}} \cdot \frac{\mathrm{e}^{\gamma \cdot \operatorname{len}}-\mathrm{e}^{-\gamma \cdot \operatorname{len}}}{2}$
Ω

Shunt impedance: $\quad 2 \cdot \mathbf{Z}_{\text {shunt }}=\frac{\mathbf{Z}_{\mathbf{c}}}{\tanh \left(\gamma \cdot \frac{\text { len }}{2}\right)}$
If your calculator can't handle complex exponents

$$
e^{(a+b \cdot j)}=e^{a} \cdot e^{b \cdot j}=e^{a} / b \text { (in radians) }
$$

Model:

Medium-length Lines: $80-240 \mathrm{~km}$ (50 to 150 miles) ($100-200 \mathrm{mi}$ in some texts)
Need:

Units
line length: len , d m or km
Resistance per unit length: $\quad \mathrm{r} \quad \frac{\Omega}{\mathrm{m}}$ or $\frac{\Omega}{\mathrm{km}}$
stick to the same unit length for all parameters miles may also be used

Inductance per unit length: $1 \quad \frac{H}{m}$ or $\frac{H}{k m} \quad$ OR Inductive reactance per unit length: $\quad x \quad \frac{\Omega}{\mathrm{~m}}$ or $\frac{\Omega}{\mathrm{km}}$
Capacitance per unit length: c $\frac{\mathrm{F}}{\mathrm{m}}$ or $\frac{\mathrm{F}}{\mathrm{km}}$
OR Capacitance admittance per unit length: y $\frac{\mathrm{S}}{\mathrm{m}}$ or $\frac{\mathrm{S}}{\mathrm{km}}$
Conductance to ground: $\quad \mathrm{g} \quad \frac{\mathrm{S}}{\mathrm{m}}$ or $\frac{\mathrm{S}}{\mathrm{km}}$
Find:

Surge Impedance:	$\mathbf{Z}_{\mathbf{c}}=\sqrt{\frac{\mathrm{x}}{\mathrm{y}}} \quad$ Only needed if load is in terms of SIL	$\frac{\text { Unen }}{}$
Series Resistance:	$\mathrm{R}_{\text {line }}=\mathrm{r} \cdot$ len	Ω
Series impedance	$\mathbf{Z}_{\text {series }}=(\mathrm{r}+\mathrm{j} \cdot \mathrm{x}) \cdot$ len	Ω
Shunt admittance:	$\frac{\mathbf{Y}_{\text {shunt }}}{2}=\mathrm{j} \cdot \mathrm{y} \cdot \frac{\text { len }}{2}$	S or $\frac{1}{\Omega}$

OR

$$
\text { Shunt impedance: } \quad 2 \cdot Z_{\text {shunt }}=\frac{2}{j \cdot y \cdot \operatorname{len}}
$$

OR:

Short-length Lines: less than $80 \mathrm{~km}(50 \mathrm{mi})$ (less than 100 mi in some texts)

Same as above but without the capacitors

ECE 3600 Transmission Line Examples

Ex1. A 500 kV transmission line is 500 km long and has the line parameters shown below. Use the long-length model to find $\mathbf{V}_{\mathbf{S}}$ and $\mathbf{I}_{\mathbf{S}}$ if the line is loaded to 900 MVA and $\left|\mathbf{V}_{\mathbf{R L L}}\right|$ is 490 kV . Assume the phase angle of $\mathbf{V}_{\mathbf{R}}$ is 0° and assume load $\mathrm{pf}=1$.

$$
\begin{array}{lll}
\text { len }:=500 \cdot \mathrm{~km} & \mathrm{~V}_{\mathrm{RLL}}:=490 \cdot \mathrm{kV} & \mathbf{V}_{\mathbf{R}}:=\frac{\mathrm{V}_{\mathrm{RLL}}}{\sqrt{3}}
\end{array} \quad \mathrm{~S}_{1 \phi}:=\frac{900 \cdot \mathrm{MVA}}{3}
$$

Long-length line model:

Series impedance: $\quad \mathbf{Z}_{\text {series }}:=\mathbf{Z}_{\mathbf{c}} \cdot \sinh (\gamma \cdot$ len $) \quad \mathbf{Z}_{\text {series }}=12.508+151.772 \mathrm{j} \cdot \Omega$

Shunt admittance:
(Not used in my solution)

$$
\mathbf{Y}_{\text {shunt }}:=\frac{2}{\mathbf{Z}_{\mathbf{c}}} \cdot \tanh \left(\gamma \cdot \frac{\text { len }}{2}\right) \quad \frac{\mathbf{Y}_{\text {shunt }}}{2}=4.49 \cdot 10^{-6}+1.353 \cdot 10^{-3} \mathbf{j}
$$

Shunt impedance:

$$
\mathbf{Z}_{\text {shunt }}:=\frac{\mathbf{Z}_{\mathbf{c}}}{2 \cdot \tanh \left(\gamma \cdot \frac{\operatorname{len}}{2}\right)}
$$

$$
2 \cdot \mathbf{Z}_{\text {shunt }}=2.451-738.924 \mathrm{j} \cdot \Omega
$$

Solve circuit:

$\mathbf{I}_{\mathbf{R}}:=\frac{\mathrm{S}_{1 \phi}}{\left|\mathbf{V}_{\mathbf{R}}\right|} \quad$| (Not complex in this case because $\mathrm{pf}=1$ |
| :--- |
| otherwise include a phase angle calculated
 from the pf or load other information) |

$\mathbf{I}_{\mathbf{L}}{ }^{:=} \mathbf{I}_{\text {Zshunt }}{ }^{+\mathbf{I}_{\mathbf{R}}}$
$\mathbf{I}_{\mathbf{L}}=1.062 \cdot 10^{3}+382.852 \mathrm{j} \quad \cdot \mathrm{A}$
$\mathbf{V}_{\mathbf{S}}:=\mathbf{V}_{\mathbf{R}}+\mathbf{I}_{\mathbf{L}} \cdot \mathbf{Z}_{\text {series }}$
$\mathbf{v}_{\mathbf{S}}=2.381 \cdot 10^{5}+1.659 \cdot 10^{5} \mathrm{j} \quad \cdot \mathrm{V}$
$\left|\mathbf{V}_{\mathbf{S}}\right|=290.192 \cdot \mathrm{kV} \quad \arg \left(\mathbf{V}_{\mathbf{S}}\right)=34.874 \cdot \mathrm{deg}$
$\mathbf{I}_{\text {ZshuntS }}:=\frac{\mathbf{V}_{\mathbf{S}}}{2 \cdot \mathbf{Z}_{\text {shunt }}}$
$\mathbf{I}_{\text {ZshuntS }}=-223.48+322.934 \mathrm{j} \cdot \mathrm{A}$ $\left|\sqrt{3} \cdot \mathbf{V}_{\mathbf{S}}\right|=502.628 \cdot \mathrm{kV}$
$\mathbf{I}_{\mathbf{S}}{ }^{:=} \mathbf{I}_{\text {Zshunt }}{ }^{+} \mathbf{I}_{\mathbf{L}}$
$\mathbf{I}_{\mathbf{S}}=838.23+705.786 \mathrm{j} \cdot \mathrm{A}$
$\left|\mathbf{I}_{\mathbf{S}}\right|=1096 \cdot \mathrm{~A} \quad \arg (\mathbf{I} \mathbf{S})=40.097 \cdot \mathrm{deg}$

ECE 3600 Transmission Line notes p9

Ex 2. A 345 kV transmission line is 220 km long and has the line parameters shown below.
Find $\mathbf{V}_{\mathbf{S}}$ and $\mathbf{I}_{\mathbf{S}}$ if the line is loaded to 800 MVA with $\mathrm{pf}=91 \%$ lagging. $\left|\mathbf{V}_{\mathbf{R L L}}\right|$ is 510 kV . pf :=0.91

$$
\text { len }:=220 \cdot \mathrm{~km} \quad \mathrm{~V}_{\mathrm{RLL}}:=510 \cdot \mathrm{kV} \quad \mathbf{V}_{\mathbf{R}}:=\frac{\mathrm{V}_{\mathrm{RLL}}}{\sqrt{3}} \quad \begin{aligned}
& \text { Assume the phase angle } \\
& \text { of } \mathbf{V}_{\mathbf{R}} \text { is } 0^{\circ} \text { if } \mathbf{V}_{\mathbf{R}} \text { is given }
\end{aligned}
$$

$$
\mathrm{r}:=0.037 \cdot \frac{\Omega}{\mathrm{~km}} \quad \text { Assume: } \mathrm{g}:=0 \cdot \frac{\mathrm{~S}}{\mathrm{~km}} \quad \text { Note: These are typical values }
$$ for a 345 kV transmission line

Medium-length line model:

Series impedance:	$\mathbf{Z}_{\text {series }}:=(\mathrm{r}+\mathrm{j} \cdot \mathrm{x}) \cdot \mathrm{len}$	$\mathbf{Z}_{\text {series }}=8.14+82.72 \mathrm{j} \cdot \Omega$			
Shunt admittance:	$\mathbf{Y}_{\text {shunt }}:=\mathrm{j} \cdot \mathrm{y} \cdot \mathrm{len}$	$\frac{\mathbf{Y}_{\text {shunt }}}{2}=496.98 \mathrm{j} \cdot \mathrm{\mu S}$			
Not used in my solution			\quad	Shunt impedance:	$\mathbf{Z}_{\text {shunt }}:=\frac{1}{\mathrm{j} \cdot \mathrm{y} \cdot \mathrm{len}}$
:---	:---				

Solve circuit:

$$
\mathrm{S}_{1 \phi}:=\frac{800 \cdot \mathrm{MW}}{3 \cdot \mathrm{pf}}
$$

$$
\mathbf{I}_{\mathbf{R}}:=\frac{\mathrm{S}_{1 \phi}}{\left|\mathbf{V}_{\mathbf{R}}\right|} \cdot \mathrm{e}^{-\mathrm{j} \cdot \operatorname{cosos}(\mathrm{pf})} \quad \begin{aligned}
& \text { (Negative phase angle } \\
& \text { because the } \mathrm{pf} \text { is lagging) }
\end{aligned}
$$

$\mathbf{I}_{\text {Zshunt }}:=\frac{\mathbf{V}_{\mathbf{R}}}{2 \cdot \mathbf{Z}_{\text {shunt }}}$

$$
\mathbf{I}_{\text {Zshunt }}=146.335 \mathrm{j} \cdot \mathrm{~A}
$$

$\mathbf{I}_{\mathbf{L}}:=\mathbf{I}_{\mathbf{Z s h}_{\text {shu }}}{ }^{+} \mathbf{I}_{\mathbf{R}}$
$\mathbf{I}_{\mathbf{L}}=905.647-266.29 \mathrm{j} \cdot \mathrm{A}$
$\mathbf{V}_{\mathbf{S}}:=\mathbf{V}_{\mathbf{R}}+\mathbf{I}_{\mathbf{L}} \cdot \mathbf{Z}_{\text {series }}$
$\mathbf{I}_{\text {ZshuntS }}:=\frac{\mathbf{V}_{\mathbf{S}}}{2 \cdot \mathbf{Z}_{\text {shunt }}}$
$\mathbf{I}_{\text {ZshuntS }}=-36.154+160.946 \mathrm{j} \cdot \mathrm{A}$
$\mathbf{I}_{\mathbf{S}}:=\mathbf{I} \mathbf{Z s h u n t S}^{+}{ }^{\mathbf{I}} \mathbf{L}$
Zshun
$\mathbf{I}_{\mathbf{S}}=869.493-105.344 \mathrm{j} \cdot \mathrm{A}$
$\mathbf{V}_{\mathbf{S}}=3.238 \cdot 10^{5}+7.275 \cdot 10^{4} \mathbf{j} \quad \cdot \mathrm{~V} \quad\left|\mathbf{V}_{\mathbf{S}}\right|=331.918 \cdot \mathrm{kV} \quad \arg \left(\mathbf{V}_{\mathbf{S}}\right)=12.66 \cdot \mathrm{deg}$ Line voltage: $\quad\left|\sqrt{3} \cdot \mathbf{V}_{\mathbf{S}}\right|=574.9 \cdot \mathrm{kV}$
power angle $=\delta=\arg \left(\mathbf{V}_{\mathbf{S}}\right)-\arg \left(\mathbf{V}_{\mathbf{R}}\right)=12.66 \cdot \operatorname{deg}$

$$
\left|\mathbf{I}_{\mathbf{S}}\right|=876 \cdot \mathrm{~A}
$$

$$
\arg \left(\mathbf{I}_{\mathbf{S}}\right)=-6.908 \cdot \operatorname{deg}
$$

Ex3. A 230 kV transmission line has the following length and line parameters.

$$
\text { len }:=150 \cdot \mathrm{~km} \quad \mathrm{r}:=0.06 \cdot \frac{\Omega}{\mathrm{~km}}
$$

$\mathrm{x}:=0.5 \cdot \frac{\Omega}{\mathrm{~km}}$
$\mathrm{g}:=0 \cdot \frac{\mathrm{~S}}{\mathrm{~km}}$
$\mathrm{y}:=4 \cdot 10^{-6} \cdot \frac{\mathrm{~S}}{\mathrm{~km}}$
Medium-length line model:

$$
\begin{array}{ll}
\text { Series impedance: } & \mathbf{Z}_{\text {series }}:=(\mathrm{r}+\mathrm{j} \cdot \mathrm{x}) \cdot \mathrm{len} \\
\text { Shunt admittance: } & \mathbf{Y}_{\text {shunt }}:=\mathrm{j} \cdot \mathrm{y} \cdot \mathrm{len} \\
\text { Shunt impedance: } & \\
\mathbf{Z}_{\text {shunt }}:=\frac{1}{\mathrm{j} \cdot \mathrm{y} \cdot \operatorname{len}}
\end{array}
$$

$$
\mathbf{Z}_{\text {series }}=9+75 \mathrm{j} \cdot \Omega
$$

$$
\frac{\mathbf{Y}_{\text {shunt }}}{2}=0.3 \mathrm{j} \cdot \mathrm{mS}
$$

$$
2 \cdot \mathbf{Z}_{\text {shunt }}=-3.333 \mathrm{j} \cdot \mathrm{k} \Omega
$$

a) The load is 250Ω with a power factor of 0.87 , leading. Find the line current, $\mathbf{I}_{\text {Line }}$.

$$
\mathbf{Z}^{:}:=\mathbf{Z}_{\text {series }}+\frac{1}{\frac{\mathbf{Y}_{\text {shunt }}}{2}+\frac{1}{\mathbf{Z}_{\mathbf{L}}}}
$$

$$
\mathbf{Z}=210.467-56.544 \mathrm{j} \cdot \Omega=219.7 \Omega /-15.04^{\circ}
$$

$$
\mathbf{I}_{\text {Line }}:=\frac{\mathbf{V}_{\mathbf{S}}}{\mathbf{Z}} \quad \mathbf{I}_{\text {Line }}=588.459+158.096 \mathrm{j} \cdot \mathrm{~A}=609.3 \mathrm{~A} / \underline{15.04}{ }^{\circ}
$$

b) Find the load line voltage.

$$
\mathbf{I}_{\text {Line }} \cdot \mathbf{Z}_{\text {series }}=-6.561+45.557 \mathrm{j} \cdot \mathrm{kV}
$$

$$
\begin{array}{ll}
\mathbf{V}_{\mathbf{R}}:=\mathbf{V}_{\mathbf{S}^{-}} \mathbf{I}_{\text {Line }} \cdot \mathbf{Z}_{\text {series }} & \mathbf{V}_{\mathbf{R}}=139.352-45.557 \mathrm{j} \cdot \mathrm{kV}=146.6 \mathrm{kV} / \underline{/-18.1^{\circ}} \\
& \text { Receiving line voltage }=\left|\sqrt{3} \cdot \mathbf{V}_{\mathbf{R}}\right|=253.9 \cdot \mathrm{kV}
\end{array}
$$

Notice that $\left|\mathbf{V}_{\mathbf{R}}\right|$ is bigger than $\left|\mathbf{V}_{\mathbf{S}}\right|$, this can happen when the receiving-end power factor is leading.
c) What is the "power angle"
(δ)?
$\delta=-\arg \left(\mathbf{V}_{\mathbf{R}}\right)=18.104 \cdot \operatorname{deg}$
d) How much power is delivered to the load?

$$
\mathrm{I}_{\mathrm{R}}:=\frac{\left|\mathbf{V}_{\mathbf{R}}\right|}{\left|\mathbf{Z}_{\mathbf{L}}\right|} \quad \mathrm{P}_{\mathrm{L}}=3 \cdot\left|\mathbf{V}_{\mathbf{R}}\right| \cdot \mathrm{I}_{\mathrm{R}} \cdot \mathrm{pf}=224.4 \cdot \mathrm{MW}
$$

Power estimate for the same $\left|\mathbf{V}_{\mathbf{R}}\right|$ and $\left|\mathbf{V}_{\mathbf{S}}\right|$, but neglecting the line resistance:

$$
\simeq 3 \cdot \frac{\left|\mathbf{v}_{\mathbf{S}}\right| \cdot\left|\mathbf{V}_{\mathbf{R}}\right| \cdot \sin (18.1 \cdot \mathrm{deg})}{\left|\mathbf{Z}_{\text {series }}\right|}=240 \cdot \mathrm{MW}
$$

e) Express this loading in terms of SIL

$$
\text { Surge Impedance: } \quad \mathbf{Z}_{\mathbf{c}}:=\sqrt{\frac{\mathrm{x}}{\mathrm{y}}} \quad \mathbf{Z}_{\mathbf{c}}=353.6 \cdot \Omega \quad \frac{\mathbf{Z}_{\mathbf{c}}}{\mathrm{Z}_{\mathrm{L}}}=1.414
$$

SIL load Not asked for in this class

