1. A 3-phase circuit is connected as shown.

Find the following:
a) The load power factor, assume lagging.
b) The line current.
c) The phase impedance, \mathbf{Z}_{ϕ}
d) The value of Y-connected impedances that would result in exactly the same line currents and same pf.
e) The reactive power of each \mathbf{Z}_{ϕ}
f) Correct the power factor with capacitors connected in a wye configuration.
$\omega:=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$

_N
2. For the three-phase circuit shown, the $R_{\text {line }}$ resistors represent the resistance of the distribution system. Find the following:

3. Textbook 2-6, modified The figure below shows a one-line diagram of a small 480-V distribution system in an industrial plant. For parts a) and b), assume all the lines have zero impedance.

b) Repeat a) with the switch closed.
c) What happened to the total current supplied by the utility when the switch closed? Why?

For the two parts below, assume the source voltage is adjusted so that the bus voltage at the plant remains 480 V and the lines from the utility each have an impedance of $\mathbf{Z}_{\text {line }}$.
d) With the switch open, find the magnitude of the source voltage and the efficiency of the system.
e) With the switch closed, find the magnitude of the source voltage and the efficiency of the system.

Answers

1. a) 0.857
b) $23.3 \cdot \mathrm{~A}$
c) $38.6 \cdot \Omega \quad \leq 31 \cdot \mathrm{deg}$
d) $12.9 \cdot \Omega \quad \leq 31 \cdot \mathrm{deg}$
e) $3.61 \cdot \mathrm{kVAR}$
f) $106 \cdot \mu \mathrm{~F}$
2. a) $59.86 \cdot \mathrm{~kW}$
$34.56 \cdot \mathrm{kVAR}$
$46.04 \cdot \mathrm{~kW}$
34.53.kVAR
input:
$105.9 \cdot \mathrm{~kW}$
69.09.kVAR
$126.4 \cdot \mathrm{kVA}$
152.A
b) Loads $1 \& 2$ are the same Caps
$0 \cdot \mathrm{~W}-46.06 \cdot \mathrm{kVAR}$
c) Current is less by more than 20A because caps supply most of the VARs to loads $1 \& 2$.
input:
d) $505.4 \cdot \mathrm{~V} \quad 96.8 . \%$
$105.9 \cdot \mathrm{~kW}$
$23.03 \cdot \mathrm{kVAR}$
$108.4 \cdot \mathrm{kVA}$
130.4•A
