ECE 3600 homework # 6

1. Textbook 1-7

2. Textbook	Example 1-2 with	Mean magnetic length:	$1_{c} = 50 \cdot cm$	
		Air gap length:	$1_{a} = 0.06 \cdot cm$	
		Core cross-sectional area:	$A_c = 16 \cdot cm^2$	
Answers	1. 0.0054·Wb	2. 727·mA		

ECE 3600 homework # 7

Ideal transformers

- 1. A step-up transformer is designed to have an output voltage of 2200 V (rms) when the primary is connected across a 240 V (rms) source.
 - a) If there are 150 turns on the primary winding, how many turns are required on the secondary?
 - b) If a load resistor across the secondary draws a current of 1.2 A, what is the current in the primary, assuming ideal conditions?
- 2. An ideal transformer has a turns ratio (N = N_1/N_2) of 1.5 . It is desired to operate a 200 Ω resistive load at 150 V (rms).
 - a) Find the secondary and primary currents.
 - b) Find the source voltage (V_1) .
 - c) Find the power dissipated in the load resistor and the power delivered to the primary from the source.
 - d) Find the impedance the source sees looking into the primary winding by calculating $Z_{eq} = N^2 Z_L$ and again by calculating V_1 / I_1 .
- The transformer shown in the circuit below is ideal. It is rated at 120/30 V, 80 VA, 60 Hz Find the following:
 - a) I₁ = ?
 - b) V₂ = ?
- 4. An ideal transformer has a rating of 500/125 V, 10 kVA, 60 Hz. It is loaded with an impedance of 5Ω at 80% pf(0.80). The source voltage applied to the primary winding is 440 V (rms). Find:

a) the load voltage	b) the load current
c) the kVA delivered to load	d) the power delivered to load
e) the primary current	f) the power factor of primary

- g) the impedance the source sees looking into primary.
- 5. An ideal transformer is rated to deliver 400 kVA at 460 V to a customer.
 - a) How much current can the transformer supply to the customer?
 - b) If the customer's load is purely resistive (i.e. if the pf = 1), what is the maximum power the customer can receive?
 - c) If the customer's power factor is 0.8 (lagging), what is the maximum usable power the customer can receive?
 - d) What is the maximum power if the power factor is 0.7 (lagging)?
 - e) If the customer requires 300 kW to operate, what is the minimum allowable power factor given the rating of this transformer?

Answers

1. a) 1375 turns	b) 11 A	2. a) 0.75 A,	0.50 A	b) 225 V	c) 112.5 W	d) 450Ω		
3. a) 0.4·A	b) 24V	4. a) 110 V	b) 22 A	c) 2.42 kVA	d) 1.94 kW	e) 5.5 A	f) 0.80	g) 80Ω <u>/36.9</u> ° Ω
5. a) 870·A b)) 400·kW	c) 320·kW d) 2	80·kW e)	0.75	ECE 3	600 hom	nework	# 6 & 7

b