ECE 3600 homework \# 9

1. 5.7 A $500 / 200-\mathrm{V}, 30-\mathrm{kVA}$ transformer is reconnected as a $700 / 500-\mathrm{V}$ autotransformer. Compute the new kVA rating of the device.
2. Show connections to the following 100/40-V, 200-VA transformers to get the voltage ratios desired. Compute the new VA rating of each connection.
a) $140 / 40 \mathrm{~V}$
b) $140 / 100 \mathrm{~V}$

c) $60 / 40 \mathrm{~V}$
d) $60 / 100 \mathrm{~V}$

3. 5.8 The terminals of a 500/200-V transformer can be interconnected in four different ways, two of which will result in a 700/500-V autotransformer. Assume that you have interconnected the windings in the wrong way, but that you believe that you did it the right way. In other words, you think that you have a 700/500-V autotransformer when in fact you have something else. As you now connect the " $700-\mathrm{V}$ terminals" of your device to a $700-\mathrm{V}$ source, you expect to obtain $500-\mathrm{V}$ between what you presume to the " $500-\mathrm{V}$ terminals." To your surprise you get an entirely different voltage.
a) What voltage do you get?
b) What will happen to your transformer with this kind of treatment?
4. a) Draw a per-phase drawing of for the balanced 3-phase, $60-\mathrm{Hz}$ system shown. You may neglect phase issues introduced by $Y-\Delta$ and $\Delta-Y$ connections. You may need to modify the turns ratio of the transformer to reflect $Y-\Delta$ and $\Delta-Y$ connections. Be sure to show values of the source, passive components and turns ratio on your drawing.

b) Find $\frac{\mathbf{V}_{\mathbf{1}}}{\mathbf{V}_{\mathbf{2}}}$ incuding phase angle

It is easy to see how to transform three-phase power with the use of three single-phase transformers, but there are two ways to transform three-phase power using only two single-phase transformers. The next two problems investigate these methods. In them, we will transform 480 V three phase to 240 V three phase; hence, the transformers have a turns ratio of $2: 1$. Hint: In both figures, the geometric orientation hints of the phasor relationships.
5. The configuration shown is called the "open-delta" or " V " connection, for obvious reasons. Identical 2:1 transformers are used.
a) Show that if ABC is $480-\mathrm{V}$ balanced three phase, abc is $240-\mathrm{V}$ balanced three-phase. Consider the $A B C$ voltages to be a three-phase set and prove the abc set is three-phase.
b) If the load is 30 kVA , find the required kVA rating of the transformers to avoid overload. [You can solve this independent of part a)]

6. 1.22. The configuration shown is called the "T" connection. For this connection, the $2: 1$ transformers are not identical but have different voltage and kVA ratings. The bottom transformer is center-tapped so as to have equal, in-phase voltages for each half.
a) Find the voltages V_{1} and V_{2} to make this transform $480-\mathrm{V}$ to $240-\mathrm{V}$ balanced three-phase.
b) If the load is 30 kVA , find the required kVA rating of each transformer to avoid overload.

7. A phase-shifting transformer has a complex turns ratio of $\mathbf{t}:=4 \cdot \mathrm{e}^{\mathrm{j} \cdot 20 \cdot \mathrm{deg}}=4 \underline{/ 20^{\circ}}$

It has a series impedance of $\quad \mathbf{Z}_{\mathbf{S}}:=(0.05+\mathrm{j} \cdot 0.6) \cdot \Omega$
Find the admittance matrix of this tranformer (see the last page of the transformer notes).

Answers

1. $105 \cdot \mathrm{kVA}$
2. a) $140 / 40 \mathrm{~V}$

b) $140 / 100 \mathrm{~V}$

3. a) $1167 \cdot \mathrm{~V}$
b) The smoke gets out

b) $2.309 /-30^{\circ}$
4. a) Calculate $\mathbf{V}_{\mathbf{b c}}$ from the other two voltages and show that it has the correct magnitude and correct phase angle.
b) $17.3 \cdot \mathrm{kVA}$ per transformer, $\quad 34.6 \cdot \mathrm{kVA}$ for both
5. a) $415 \cdot 7 \cdot \mathrm{~V}$
480.V
b) $15 \cdot \mathrm{kVA}$
$17.3 \cdot \mathrm{kVA}$
$32.3 \cdot \mathrm{kVA}$ for both
6. $\left(\begin{array}{c}0.138-1.655 \cdot j \\ -0.174+0.377 \cdot j\end{array}\right.$

$0.109+0.401 \cdot j$	$\cdot \frac{1}{\Omega}$
$8.621 \cdot 10^{-3}-0.103 \cdot j$	

