Name \qquad ECE 3600 homework \# 11

1. A one-line diagram of a 3ϕ system is shown below. Manufacturer's information is shown for the generator and each transformer.

a) Choose an $S_{\text {base }}$ to minimize the per-unit base conversions. Then choose regions and a $V_{\text {base }}$ for each region.
b) Find $I_{\text {base }}$ and $Z_{\text {base }}$ in each of the regions.
c) Make the necessary per-unit $S_{\text {base }}$ conversions.
d) Find the impedances of the two transmission lines and convert to pu.
e) Draw the per-phase diagram on separate paper, showing all the per-unit numbers found or given so far.

ECE 3600 homework \# 11 p2

ALL calculations made to this point ONLY need to be made ONCE for this system and $S_{\text {base }}!!$

f) Find the pu values of the 3 loads and add that information to the per-phase diagram.
g) The line voltage at bus 1 is measured and found to be $\mathrm{V}_{\text {bus } 1}:=46.00 \cdot \mathrm{kV}$ Assume the phase angle is 0°. Find all 3 load line-current magnitudes and the magnitude of the generator line-current. Please remember that you can't add magnitudes, so may need some complex values.
h) Find the power delivered to Load 2, both in pu and in kW .
i) Find the line voltage at Load 2 (magnitude).
j) Find the line voltage at the generator (magnitude).
k) The line voltage at the generator drops by 10% to: $3.688 \cdot \mathrm{kV}$

Find the magnitude of Load-3 line current and repeat parts h) and i) for this new generator voltage.
Note: It may be helpful to realize that if one voltage in the system drops by 10%, so do all the rest, and so do all the currents. Drop by 10% means multiply by 0.9 . All powers drop too, but use $(0.9)^{2}$ as the factor.

Answers

1. a) $12 \cdot \mathrm{kVA} \quad 4 \cdot \mathrm{kV} \quad 46 \cdot \mathrm{kV}$ etc
b) $1.732 \cdot \mathrm{~A} \quad 1.333 \cdot \mathrm{k} \Omega \quad 0.151 \cdot \mathrm{~A} \quad 176.3 \cdot \mathrm{k} \Omega$ etc
c) through j) see drawing

