1. A one-line diagram of a 3φ system is shown below. Manufacturer's information is shown for the generator and each transformer.

Name_

a) Choose an S_{base} to minimize the per-unit base conversions. Then choose regions and a V_{base} for each region.

b) Find I_{base} and Z_{base} in each of the regions.

c) Make the necessary per-unit $S_{base}\ \mbox{conversions}.$

d) Find the impedances of the two transmission lines and convert to pu.

j) Find the line voltage at the generator (magnitude).

p3

- k) The line voltage at the generator drops by 10% to: $\,3.688{\cdot}kV$
 - Find the magnitude of Load-3 line current and repeat parts h) and i) for this new generator voltage.

Note: It may be helpful to realize that if one voltage in the system drops by 10%, so do all the rest, and so do all the currents. Drop by 10% means multiply by 0.9. All powers drop too, but use $(0.9)^2$ as the factor.

Answers

- 1. a) $12 \cdot kVA$ $4 \cdot kV$ $46 \cdot kV$ etc
 - b) $1.732 \cdot A$ $1.333 \cdot k\Omega$
- $0.151 \cdot A$ $176.3 \cdot k\Omega$ etc
- c) through j) see drawing

k) 4.1·A 3.452·kW 423.7·V