ECE 3600 homework # SG1

- A single-phase generator delivers a voltage of 680 V rms at its terminals and a current of 32 A rms. The real power delivered is 15 kW.
 Find the reactive power Q. Give both possible answers.
- A 3-phase synchronous generator operates onto a grid bus of voltage 12 kV (line value). The synchronous reactance is 5 Ω/phase. The magnitude of the generator emf equals the magnitude of the bus voltage. The machine delivers 18 MW to the grid. Find:
 - a) The power angle, δ .
 - b) The complex phase current, (Assume the bus voltage phase angle is 0°).
 - c) The magnitude and direction of reactive power.
- 3. A 60 Hz, 2-pole, 3-phase synchronous generator supplies power to a 12.5 kV bus. The synchronous reactance is 4

 Ω /phase. The generator emf is 7 kV /20° (the angle is referenced to the terminal voltage). Find the following.

- a) The total power generated.
- b) The total reactive power generated.
- c) The shaft torque from the prime mover, neglecting friction.
- d) Increase the magnitude of the generator emf so that $Q := 0 \cdot VAR$ The prime mover torque does not change. Note: If the prime mover torque doesn't change, neither does P. δ can change.
- e) The new power angle, δ .
- f) Increase the magnitude of the generator emf so that $Q = 9 \cdot MVAR$
- g) The new power angle, δ .
- 4. 4.39 Refer to the per-phase phasor diagram at right. It is for a 12-pole, three-phase synchronous machine.
 - a) Is the machine operating as a motor or a generator?
 - b) What is the voltage and apparent power into/out of the machine?
 - c) Determine the synchronous reactance of the machine.
 - d) For the same real power, what magnitude of excitation voltage yields unity power factor?
- 5. 4.41. A cylindrical-rotor, 60-Hz, three-phase, 12-pole synchronous motor operates from 2300 V and produces 500 hp. The motor operates with unity power factor with an excitation voltage of E = 1620 V per phase. Neglect losses. Determine the following:

Im

- a) The current.
- b) The synchronous reactance.
- c) The torque.
- d) The rotor power angle.
- 6. 4.43. The per-phase phasor diagram for a three-phase, 60-Hz,
 8-pole synchronous motor is shown. Note that all sides and two angles of the triangle are shown. The current/phase is 21 A
 - a) Is the motor overexcited or underexcited?

e) 11.hp

- b) What is the rotor power angle?
- c) What is the power factor and is it leading or lagging?
- d) Determine the synchronous reactance per phase.
- e) Determine the output power and torque, neglecting mechanical losses.

87.N.m

Answers

d) 5.83·Ω

1. ± 15.8 kVAR	2. a) 38.68·deg	b) 918·A / 19.34·deg	c) - 6.32·MV	VAR		
3. a) 12.96·MW	b) - 3.459·MVAR	c) 3.437·10 ⁴ ·N·m	d) 7.604·kV	e) 18.35 deg	f) 9.197·kV	g) 15.1·deg
4. a) motor	b) 132.8·V	7.97·kVA	c) 2·Ω	d) $E_A = 13$	8·V	
5. a) 93·6·A	b) 9.92·Ω	c) 5934·N·m	d) 34.95·deg	7		
6. a) underexcited	b) - 50·deg	c) 0.939 lagging	E	CE 3600 I	homework #	SG1

<u>V</u> = <u>240</u>

 $\underline{\mathbf{E}}_{\mathbf{A}} = 151.2 \angle -50^{\circ}$

 $\angle 0$

Re

110.1°

Length = 122.4 V