rand( 'state', 54321 );
randn( 'state', 54321 );
% Various channel models.  Uncomment one.
% c = [ 1 1 ].';
c = [ 1 0 .9*exp(j*1.1*pi) zeros(1,30) ].';  note the zeros to get a good frequency span…
% c = [ 1 .9*exp(j*.1*pi) .1 -.6 -.5*exp(j*.2*pi) 0 0 .3 .1 zeros(1,30) ].';
figure(11); stem( abs( c ) )
% Q1: Plot an FFT of the channel response (use 20log10() to show the power 
% rather than the voltage response.  How deep is the deepest null from 
% highest point to deepest point?  

About 20 dB

% Assume a nominal EbNo = 10 dB.  What is the SNR in this null?  
10 – 20 = -10 dB

Would a 
% system run error free at that freqeuncy?

No

C = fft(c);
figure(1); plot( 20*log10( abs(C) ) );
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% Create a bit stream of length N = 1000 bits.
N = 1000;
x = 1 - 2 * round(rand( N, 1 ));
% The signal arriving at the receiver experiences multipath in the channel:
r = filter( c, 1, x );
% Compute Eb
Eb = mean( abs(r).^2 );
% Assume an Eb/No of 10 dB due to path losses and add noise at the receiver
EbNo = 10; % (dB)
% Q2: Compute sigma.  Hint1: sigma^2 = No/2 and you've already computed Eb.
% Hint #2, you need linear EbNo not EbNo in dB.  Is this a power or voltage
% relationship?

This is a power relationship (10log10()—not 20log10())

EbNo_lin = 10^(EbNo / 10);
sigma = sqrt( 1/(EbNo_lin/Eb) / 2 )
y = r + sigma * randn(size(b));
% Q3: Are the nulls in the noisy spectrum the same depth as in Q1? 
No, the nulls are shallowere (-15 dB now)
 Is this
% related to the noise? 
Yes, the noise fills in some of the nulls.

 What does this tell you about the quality of any
% equalization?

Inverting the channel will amplify noise.

figure(2); pwelch( y, 256,[],[],10, 'twosided')
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% Let's use an equalizer of length L = 16 taps
L = 16;
% Let's do data-aided equalization over a training sequence of length M =
% 50 points.
M = 50; %GSM length 100;
% Q4: Is data aided better than decision directed?  
Yes, data aided is better than decision directed.

Are we using more of
% fewer samples than the GSM midamble?

Fewer

% Q5: Show how to construct the Y matrix discussed in class to represent 
% which samples are convolved with an equalizing filter to give estimates 
% of x[n], ... x[n-M+1]
inds = N:-1:N-L+1;
Y = [ y(inds).' ];
for ii = 1:M-1,
    Y = [ Y ; y(inds-ii).' ];
end
% Q6: show how to compute h, the MSE equalizer filter, h
h = inv( Y' * Y ) * Y' * x(N:-1:N-M+1);
% figure(3); stem( abs( conv( h, c ) ) );
% Q7: how does the spectrum of the equalizing filter compare to the
% spectrum of the channel?  What shape is the combination of the channel
% and the equalization?  What shape should it be?
H = fft([ h ; zeros( length(c) - length(h), 1 ) ]);
HC = fft(conv(h,c));
figure(4); plot( 20*log10( abs([C H]) ) ); legend( '|C(f)|^2', '|H(f)|^2' )
figure(5); plot( 20*log10( abs(HC) ) );

The equalizer peaks and values are opposite those of the channel.
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The combined response is largely flat, but the equalizer left a couple of narrow nulls.
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% Q8: How many errors would we have without equalization?
errs_noEQ = sum( sign(real(y)) ~= x )
errs_noEQ =

   162

% Now apply the equalizer
xhat = filter( h, 1, y );
figure(6); pwelch( x, 256, [],[],10, 'twosided' )
% Q9: How many errors do we have after equalization?
errs_EQ = sum( sign(real(xhat)) ~= x )
errs_EQ =

    27
% Q10: What do these plots tell you about why the performance differs in
% each case?
figure(8); stem( [ x real( y ) ] );
figure(9); stem( [ x real(xhat) ] );
The equalized values are closer to the transmitted signals than the un-equalized samples.

% Q11: How many errors would we have if we set L = 32, 30, 8?

L = 32:  errs_EQ =

    60

L = 30:  errs_EQ =

    55
L = 8:  errs_EQ =

    28
% Q12: How much does equalizer length dictate performance?

Not clearly related.
% Q13: Set EbNo = 20, M = 50, L = 16.  How many errors do we get?

errs_noEQ =

    36

errs_EQ =

     0
% Q14: How much does performance depend on EbNo?
Quite a bit.  If there’s less noise to amplify, the equalizer does quite well.
% Suppose we equalized adaptively.
% Run the commeqsim.mdl demo 
% Q15: When do the RLS and LMS algorithms converge?  (See the MSE
% Convergency plot.  (You may have to shorten the simulation time to see it
% well.)
LMS at 2 sec
RLS at < 0.1 sec
% Q16: Which algorithm has the smallest steady-state error?  What shows you
% this?
LMS see the MSE convergency plot
% Q17: Please draw/print the channel, equalizer and combined frequency
% response.  Why might the combined response not be flat?
Inverting a channel impulse response is generally complicated by noise and modeling errors.  Flatter responses are possible, but the responses are not generally especially flat.
[image: image5.png]=18

Elo fxes Channeks Window Help

— Equalizer
20 — Channel

T Combined
10

Magnitude

o<

-10 -5 0 5 10

Eramiancy (lH»\

-10





% Q18: What do you think the MSE cost function plot is showing?

Estimated error.
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% Q19: Why are adaptive equalizers more common than using a pseudo inverse
% as we did above?

Adaptive algorithms compute the pseudo inverse iteratively as the data arrives.  This is computationally efficient and removes most of the latency of computing a pseudo inverse.
