% Please complete this code and answer the questions designated Q1..Q22.
clear
rand( 'state', 7654 );
randn( 'state', 7654 );
% Suppose we want a [ 7, 4 ] Hamming code.
% Q1: Based on the following expressions, what must m be?  +++
m = 3; 
n = 2^m-1
k = n-m
% Produce the parity-check matrix.
H = hammgen(m); 
G = gen2par(H)';
% Q2: How do H and G differ from the ones discussed on the wikipedia page?

The columns are all there in H, but out of order.

G looks similar with rows out of order.  However, one row looks quite different.
% Q3: Is the code still systematic?  How can you tell?
Yes.  You can see a 3x3 identity at the right of H and a 4x4 identity at the bottom of G. 

% Generate some data.
N_target = 80; %1e6;
N = k * floor( N_target/k );
data = round( rand( N, 1 ) );
d = reshape( data, k, N/k );
% Encode the data with the generator matrix.
c = rem( G * d, 2 );
% Q4: Can you see the encoded data in the coded data stream?
Yes, the bottom four rows of c are identical to d.  This comes from the 4x4 identity at the bottom of G.
% Map to antipodal signaling (+1, -1)
x = 1 - 2*c;
% run the simulation at a particular EbNo level
EbNo_dB = 3;
ii = 1;
% -----------------------
% EbNos = 4:12;
% for ii = 1:length( EbNos ),
% EbNo_dB = EbNos(ii);
% -----------------------
    % add noise to the coded data
    EbNo = 10^(EbNo_dB/10);
    % Q5: what is the code rate, R_fec, in terms of k and n?  +++
    R_fec = k/n;
    So, R_fec = 4/7.
    % Q6: How is EsNo related to EbNo and R_fec?   +++
    EsNo = EbNo * R_fec;
    There is less energy per symbol than per bit.  Adding redundancy means symbols transition more often than unencoded bits.  As a result, a fixed output power times a shortened symbol period means there’s less energy per symbol than per bit.
    Es = 1;  % 0, 1 centered around 0.5
    sigma = sqrt( Es / EsNo / 2 );  % sigma^2 = No/2
    noise = sigma * randn( size( x ) );
    y = x + noise;
    % Do hard decision decoding
    % Q8: what decision rule will give a hard decoding?  +++
    hd = y < 0;
    % Q7: Do you think this signal should make any hard decision errors?
    figure(1); hist( y(:), 20 );
Yes, I’d expect many errors.  It looks like the two Gaussian distributions overlap a lot and values sent as a +1 or a -1 could easily be mis-detected as having the wrong sign.
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    % Q8: Compute syndromes from the parity matrix
    syn = rem( H * hd, 2 );
    % Convert syndromes from binary to decimal to easily use the lookup
    % table
    syn2dec = 2.^[ m-1:-1:0 ];
    syn_loc = syn2dec * syn;
    % Create a look up table to convert syndromes to correction vectors
    correction = syndtable(H)';
    % Apply the correction vectors via modulo 2 addition:
    decoded = rem( hd + correction( :, 1+syn_loc ) , 2 );
    errors = decoded(m+1:end,:) ~= d;
    errors_uc = hd(m+1:end,:) ~= d;
    errors_hamm = decoded ~= c;
    % display some of the decoding steps for small data sets:
    if N < 81,
        d = d
        c = c
        hd = hd
        syn_loc = syn_loc
        decoded = decoded
        errors = errors
        errors_hamm = errors_hamm
    end
    BER(ii) = sum( errors(:) ) / N;
    BER_uc(ii) = sum( errors_uc(:) ) / N;
    theory(ii) = berawgn( EbNo_dB, 'psk', 2, 'nondiff' );
% -----------------    
% end
% 
% EbNos = EbNos
%-----------------    
BER = BER
BER_uc = BER_uc
theory = theory
%-----------------    
% figure(m); semilogy( EbNos, theory, 'b', EbNos, BER_uc, 'r', EbNos, BER, 'k' );
% legend( 'theory', 'symbol error rate', 'hamming BER' ); grid on; axis( [ EbNos(1) EbNos(end) 1e-6 0.1 ] )
%-----------------    
return;
% Now, set:
%    N_target = 1e6;
% 
% Then, uncomment lines of code that fall between lines of: %--------------
%    Run the code for m = 3, 4, 5, 6
%
% Q9: What is the code rate in each case?
m = 3

n = 2^m-1 = 7

k = n – m = 7 – 3 = 4

R_fec = k/n = 4/7

m = 4

n = 2^m-1 = 15

k = n – m = 15 – 4 = 11

R_fec = k/n = 11/15

m = 5

n = 2^m-1 = 31

k = n – m = 31 – 5 = 26

R_fec = k/n = 26/31

m = 6

n = 2^m-1 = 63

k = n – m = 63 – 6 = 57

R_fec = k/n = 57/63

m = 7

n = 2^m-1 = 127

k = n – m = 127 – 7 = 120

R_fec = k/n = 120/127
% Q10: Assuming an uncoded data rate of Rbit = 1 Mbps, what symbol rate
% does each of these choices represent?

m = 3

Rsym = Rbit / R_fec = 1 Mbps / (4/7) = 1.75 Msym/s  -- lots of overhead
m = 4

Rsym = Rbit / R_fec = 1 Mbps / (11/15) = 1.36 Msym/s
m = 3

Rsym = Rbit / R_fec = 1 Mbps / (26/31) = 1.19 Msym/s
m = 3

Rsym = Rbit / R_fec = 1 Mbps / (57/63) = 1.11 Msym/s
m = 3

Rsym = Rbit / R_fec = 1 Mbps / (120/127) = 1.06 Msym/s –- minor overhead
% Q11: Assuming the uncoded signal required 1 MHz of bandwidth, what
% signalling bandwidth does each of these choices require?

m = 3

BW = 1.75 MHz  -- lots of overhead

m = 4

BW = 1.36 MHz 
m = 5
BW = 1.19 MHz
m = 6
BW = 1.11 MHz
m = 7
BW = 1.06 MHz -– minor overhead
%
% Q12: What is the coding gain you can measure at BER = 1e-5 for each of
% these choices?
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%
% Q13: Does Hamming code performance (coding gain) increase with block size
% (n)?  NOTE: this is *representative* of most FEC approaches.

Yes, at least somewhat.
% 
% Q14: Does Hamming code performance (coding gain) increase with coding
% rate (k/n)?  NOTE: this behavior is *opposite* that of most FEC approaches.
No.
% Q15: Would you expect improved performance if a decoding algorithm worked
% with soft decision data rather than hard decision as used above?

Yes.
%
% Q16: Suppose you had the following received data sequence.  Which
% three recieved values are least reliable and most reasonable for a soft
% decision algorithm to invert?
%       1.3, -0.4, 0.1, -1.1, 0.2, -0.1, 0.8, -0.9
% Suppose you have the following data:
d = [ 1:100 ]';
% Q17: if exactly four consecutive bits are inverted by noise in the 
% channel, would the Hamming codes examined above be able to correct all
% four bit inversions?

No.  
%
% Q18: Could they correct any of them under certain conditions?

Just one error can be corrected per block size (1 in 7 for m=3, 1 in 127 for m=7).  So if the four errors fall three in one block and one in a different block.  The lone error in the second block could be corrected.
%
% Q19: Give matlab code to represent feeding this data into a 10 x 10
% interleaver and reading it back out interleaved.
temp = reshape( d, 10, 10 )';
interleaved = temp(:) 
% Q20: What are the first twenty values of the interleaved sequence?
1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 2, 12, 22, 32, 42, 52, 62, 72, 82, 92
% Assume the data is (1) interleaved after coding, (2) sent through the 
% channel which caused exactly four consecutive bit inversions, (3)
% deinterleaved, and (4) passed through the Hamming decoder.
% Q21: Will the hamming code be able to correct all of the bit inversions?

Yes, the (7,4) code would correct all four erroneous values.  Of course, the larger codes might see two errors within a block and fail, since the interleaver is just 10 x 10.
%
% Q22: What is the maximum length of a consecutive string of bit inversions
% that could be corrected through using this interleaver together with a 
% single-error correcting Hamming code?

With the (7,4) code, we could correct a sequence of ten consecutive bit inversions.  Higher-rate Hamming codes would only do as well with a larger interleaver.
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