University of Utah Advanced Electromagnetics Image Theory

Dr. Sai Ananthanarayanan
 University of Utah
 Department of Electrical and Computer Engineering
 www.ece.utah.edu/~psai

Volume Equivalence

 $_{\odot}$ Used to determine scattered fields when a material obstacle is introduced in the free space environment where the fields E_0 and H_0

These fields must satisfy Maxwell's equation:

$$\nabla \times \mathbf{E}_0 = -\mathbf{M}_i - j\omega\mu_0\mathbf{H}_0$$

$$\nabla \times \mathbf{H}_0 = \mathbf{J}_i + j\omega\boldsymbol{\varepsilon}_0\mathbf{E}_0$$

Volume Equivalence

When the same sources (J_i, M_i) radiate in a medium represented by (ε, μ) , they generate fields (E, H) that satisfy Maxwell's equations

$$\nabla \times \mathbf{E} = -\mathbf{M}_i - j\omega\mu\mathbf{H}$$
(7-36a)

$$\nabla \times \mathbf{H} = \mathbf{J}_i + j\omega\varepsilon \mathbf{E} \tag{7-36b}$$

Subtracting the two equations we get:

$$\nabla \times (\mathbf{E} - \mathbf{E}_0) = -j\omega(\mu \mathbf{H} - \mu_0 \mathbf{H}_0)$$
(7-37a)

$$\nabla \times (\mathbf{H} - \mathbf{H}_0) = j\omega(\varepsilon \mathbf{E} - \varepsilon_0 \mathbf{E}_0)$$
(7-37b)

Let us define the difference between the fields E and E_0 , and H and H_0 as the scattered (disturbance) fields E^s and H^s , that is,

$$\mathbf{E}^{s} = \mathbf{E} - \mathbf{E}_{0} \Rightarrow \mathbf{E}_{0} = \mathbf{E} - \mathbf{E}^{s}$$
(7-38a)

$$\mathbf{H}^{s} = \mathbf{H} - \mathbf{H}_{0} \Rightarrow \mathbf{H}_{0} = \mathbf{H} - \mathbf{H}^{s}$$
(7-38b)

$$\nabla \times \mathbf{E}^{s} = -j\omega [\mu \mathbf{H} - \mu_{0} (\mathbf{H} - \mathbf{H}^{s})] = -j\omega (\mu - \mu_{0}) \mathbf{H} - j\omega \mu_{0} \mathbf{H}^{s}$$
(7-39a)

$$\nabla \times \mathbf{H}^{s} = j\omega [\varepsilon \mathbf{E} - \varepsilon_{0} (\mathbf{E} - \mathbf{E}^{s})] = j\omega (\varepsilon - \varepsilon_{0}) \mathbf{E} + j\omega \varepsilon_{0} \mathbf{E}^{s}$$
(7-39b)

$$\mathbf{V}^{*} = \mathbf{I}^{*} \mathbf{$$

By defining volume equivalent electric J_{eq} and magnetic M_{eq} current densities

$$\mathbf{J}_{eq} = j\omega(\varepsilon - \varepsilon_0)\mathbf{E}$$
(7-40a)

$$\mathbf{M}_{eq} = j\omega(\mu - \mu_0)\mathbf{H}$$
(7-40b)

The electric and magnetic fields scattered by a material obstacle can be Generated by using equivalent electric J_{eq} and M_{eq} magnetic volume current Densities.

Volume equivalent current densities are most useful for finding the electric And magnetic fields scattered by a dielectric object

Surface Equivalence

Actual sources are replaced by equivalent sources

0.2000 Thorston - Brooks Col-

- These fictitious sources are said to be equivalent within a region because they produce within that region the same fields as the actual sources
- This principle was formulated by Schelkunoff and is a more rigorous formulation of Huygens's principle:
- " Each Point on a primary wavefront can be considered to be a new source of a secondary spherical wave and that a secondary wavefront can be considered as the envelop of these secondary spherical waves"

6

Surface Equivalence

"A field in a lossy region is uniquely specified by the sources within the region plus the tangential components of the electric field over the boundary, or the tangential components of the magnetic fields over the boundary, or the former Over part of the boundary and the latter over the rest of the boundary "

The fields in a lossless medium are considered to be the limit, as the losses go To zero., of the corresponding fields in lossy media.

If the tangential electric and magnetic field are known over a closed surface, the fields in the source-free region can be determined.

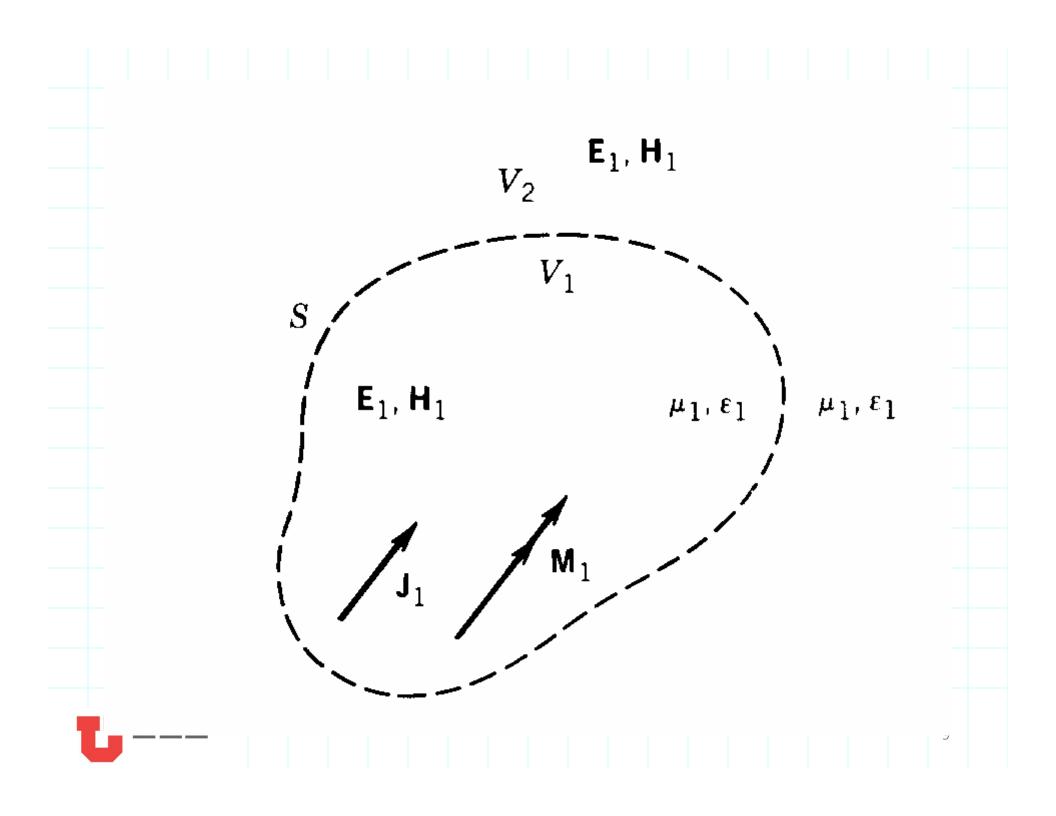
7

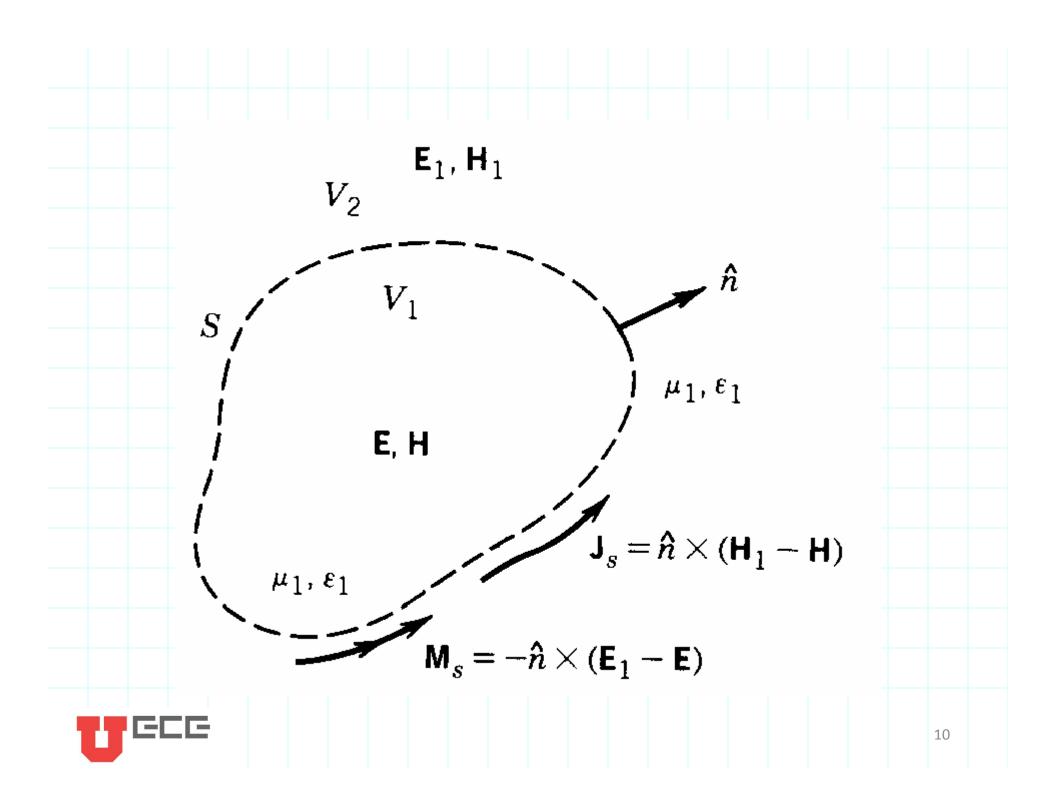
By the surface equivalence theorem, the fields outside an imaginary closed surface are obtained by placing, over the closed surface, suitable electric and magnetic current densities that satisfy the boundary conditions. The current densities are selected so that the fields inside the closed surface are zero and outside are equal to the radiation produced by the actual sources. Thus the technique can be used to obtain the fields radiated outside a closed surface by sources enclosed within

The degree of accuracy depends on the knowledge of the tangential components of the field over the closed surface

The surface equivalence theorem is developed by considering an actual radiating source, which is represented electrically by current densities J_1 and M_1 , as

8

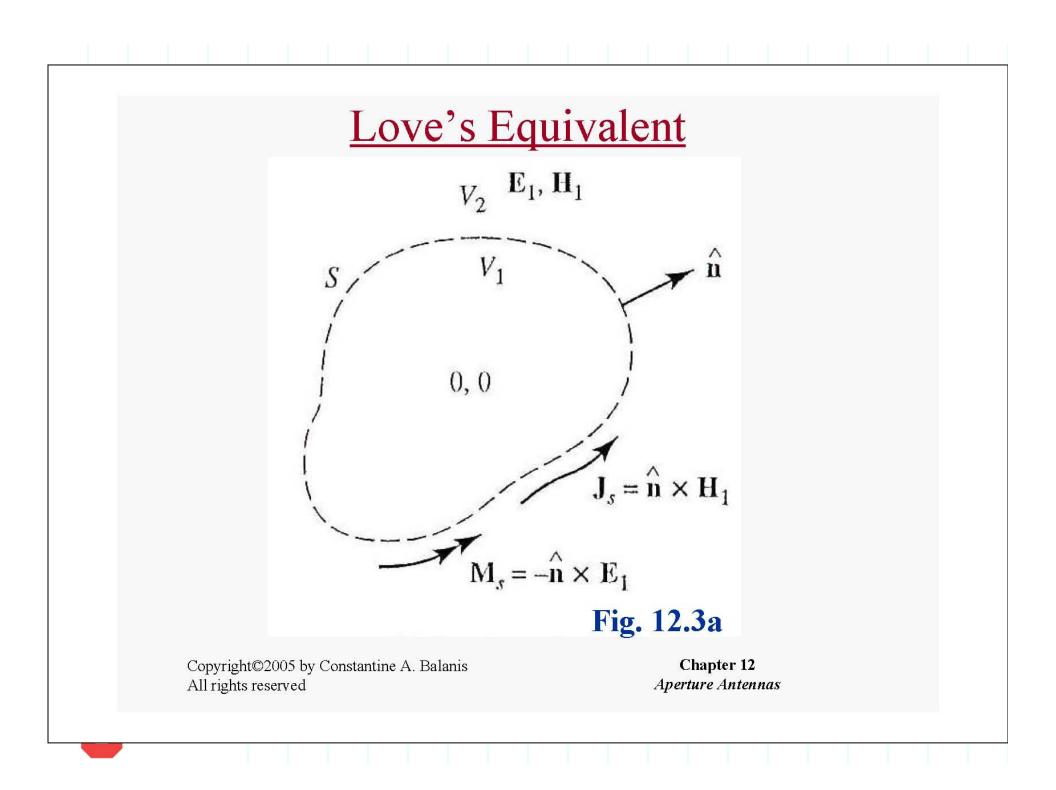


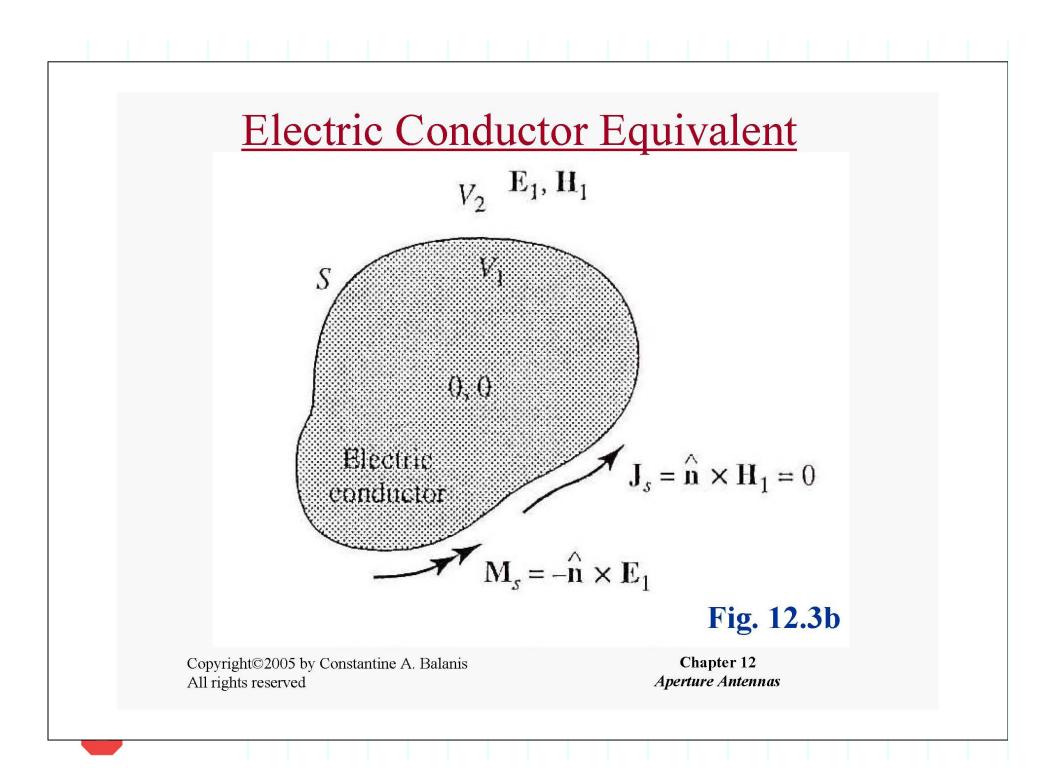


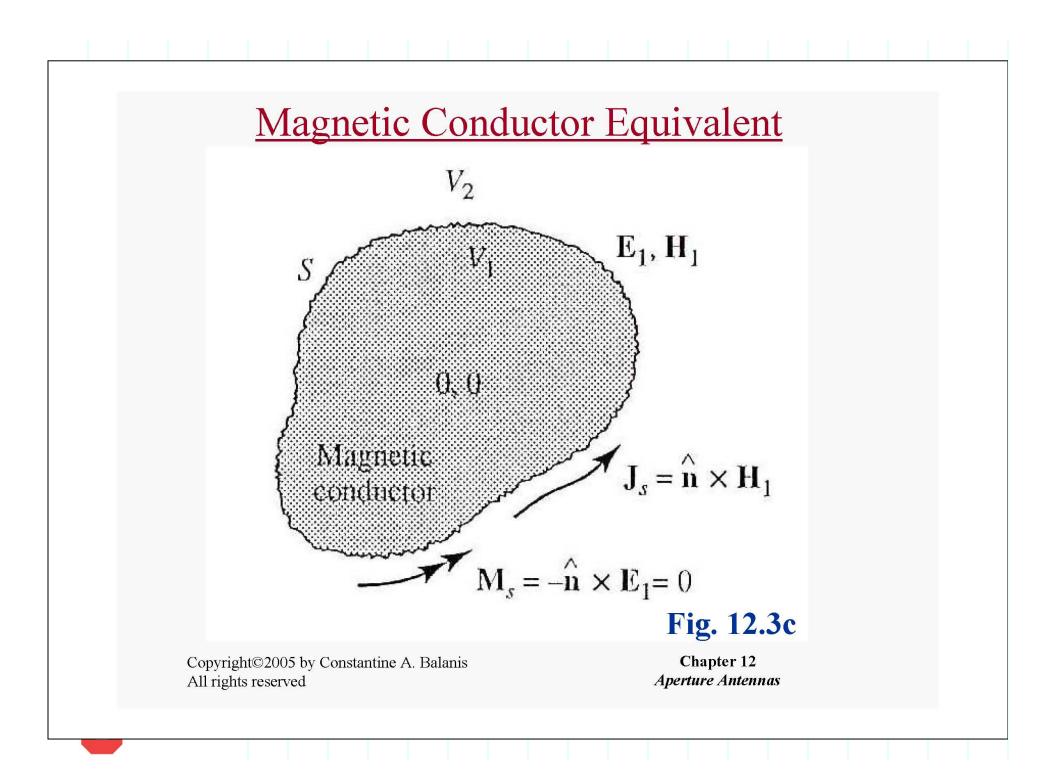
$$J_{s} = \hat{n} \times (H_{1} - H)$$

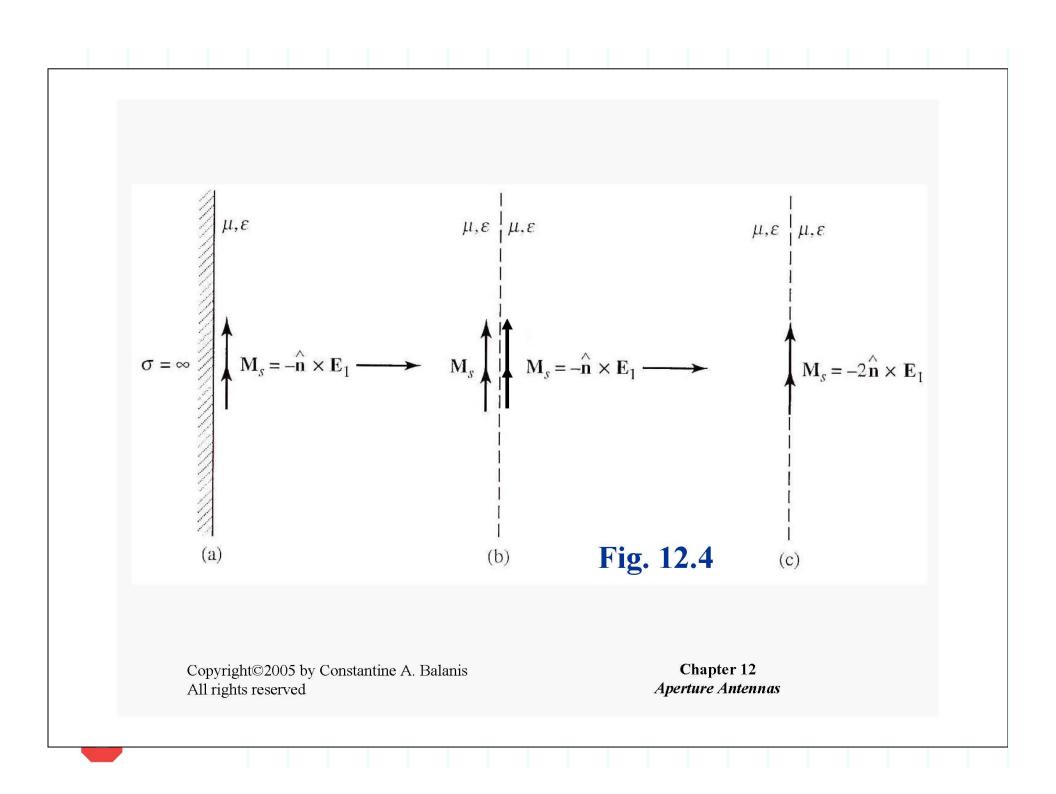
$$M_{s} = -\hat{n} \times (E_{1} - E)$$
Special case: Love'e equivalence principle
$$J_{s} = \hat{n} \times (H_{1} - H)|_{H=0} = \hat{n} \times H_{1}$$

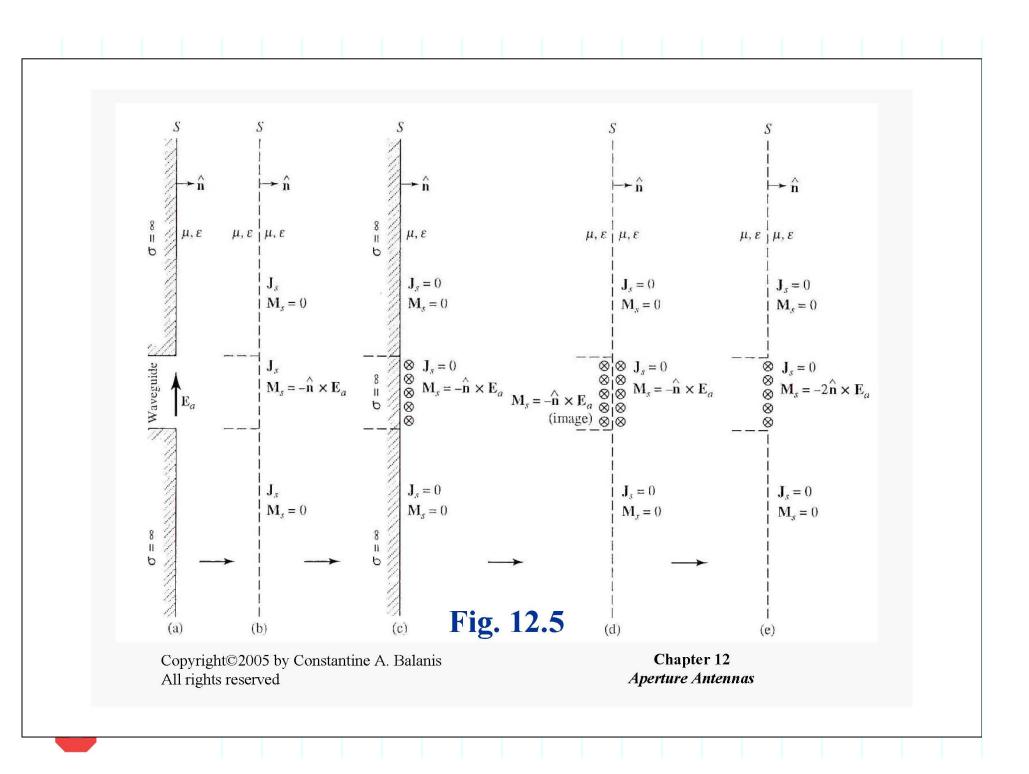
$$M_{s} = -\hat{n} \times (E_{1} - E)|_{E=0} = -\hat{n} \times E_{1}$$





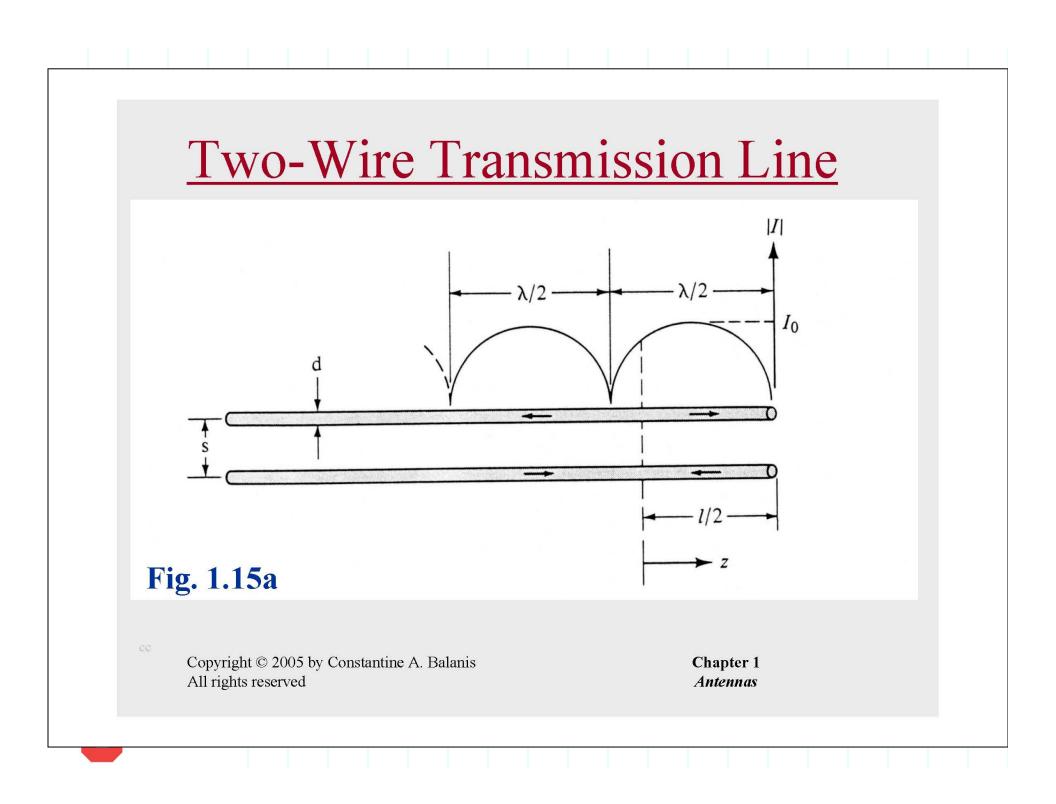


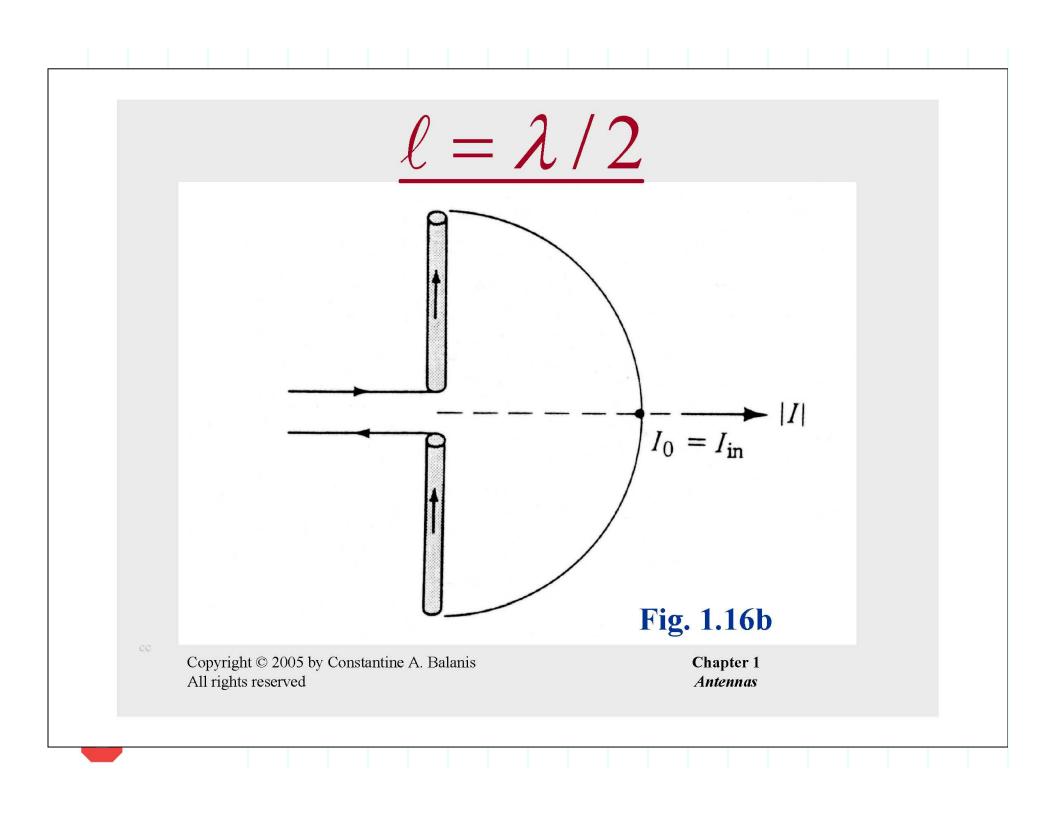


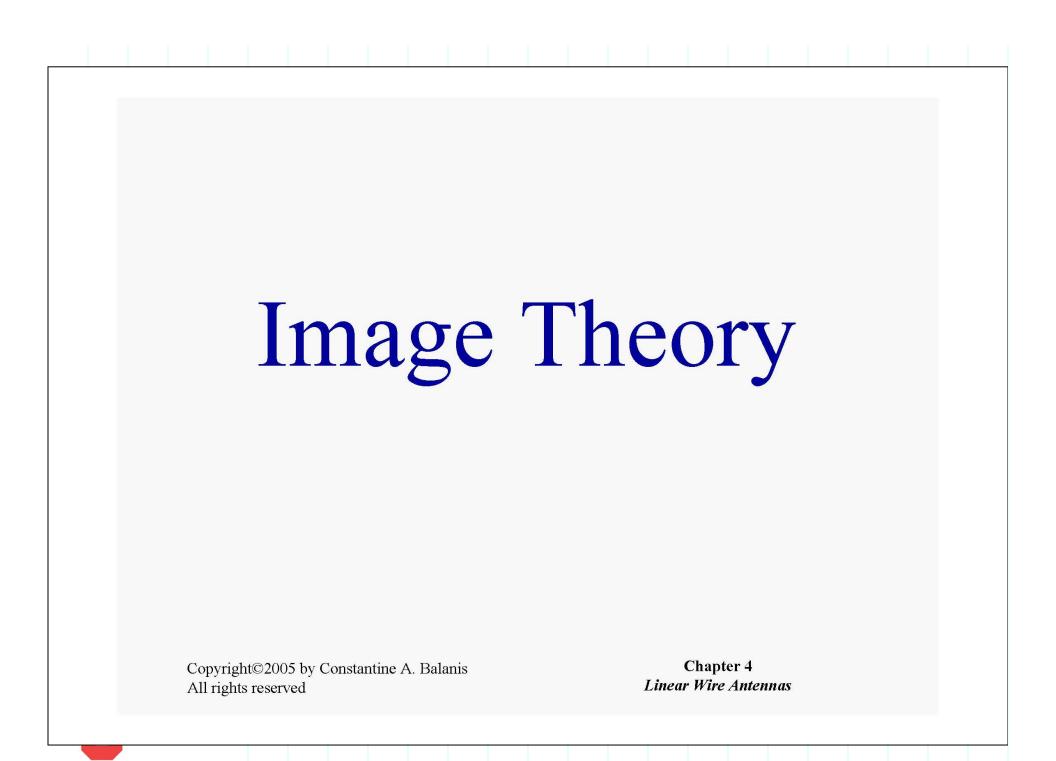


The following steps must be used to form an equivalent and solve an aperture problem.

- 1. Select an imaginary surface that encloses the actual sources (the aperture). The surface must be chosen judiciously so that the tangential components of the electric and/or the magnetic field are known, exactly or approximately, over its entire span. In many cases this surface is a flat plane extending to infinity.
- 2. Over the imaginary surface form equivalent current densities J_s , M_s that take one of the following forms.
 - **a.** J_s and M_s over S assuming that the E and H fields within S are not zero.
 - **b.** J_s and M_s over S assuming that the E and H fields within S are zero (Love's theorem).
 - c. M_s over S ($J_s = 0$) assuming that within S the medium is a perfect electric conductor.
 - **d.** J_s over S ($M_s = 0$) assuming that within S the medium is a perfect magnetic conductor
- 3. Solve the equivalent problem. For forms a and b, equations 6-30 through 6-35a can be used. For form c, the problem of a magnetic current source next to a perfect electric conductor must be solved [(6-30) through (6-35a) cannot be used directly, because the current density does not radiate into an unbounded medium]. If the electric conductor is an infinite flat plane, the problem can be solved exactly by image theory. For form d, the problem of an electric current source next to a perfect magnetic conductor must be solved. Again (6-30) through (6-35a) cannot be used directly. If the magnetic conductor is an infinite flat plane, the problem can be solved exactly by image theory. For form d, the problem of an electric current source next to a perfect magnetic conductor must be solved. Again (6-30) through (6-35a) cannot be used directly. If the magnetic conductor is an infinite flat plane, the problem can be solved exactly by image theory.

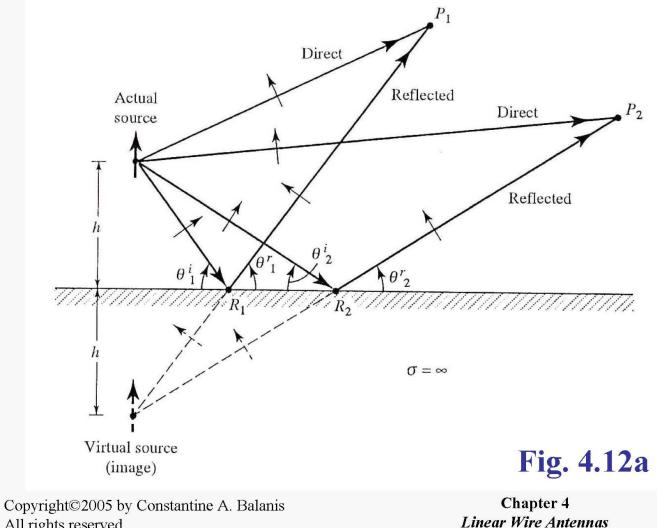






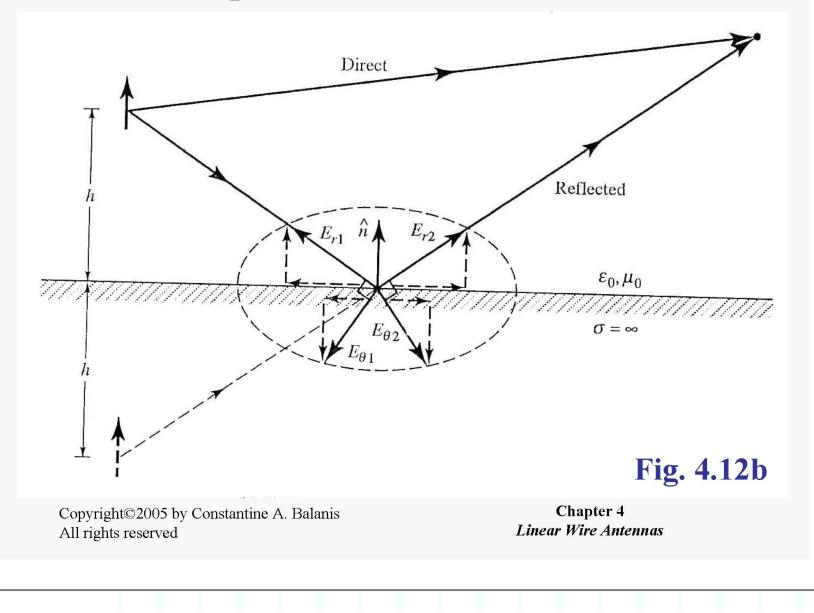
Vertical Polarization

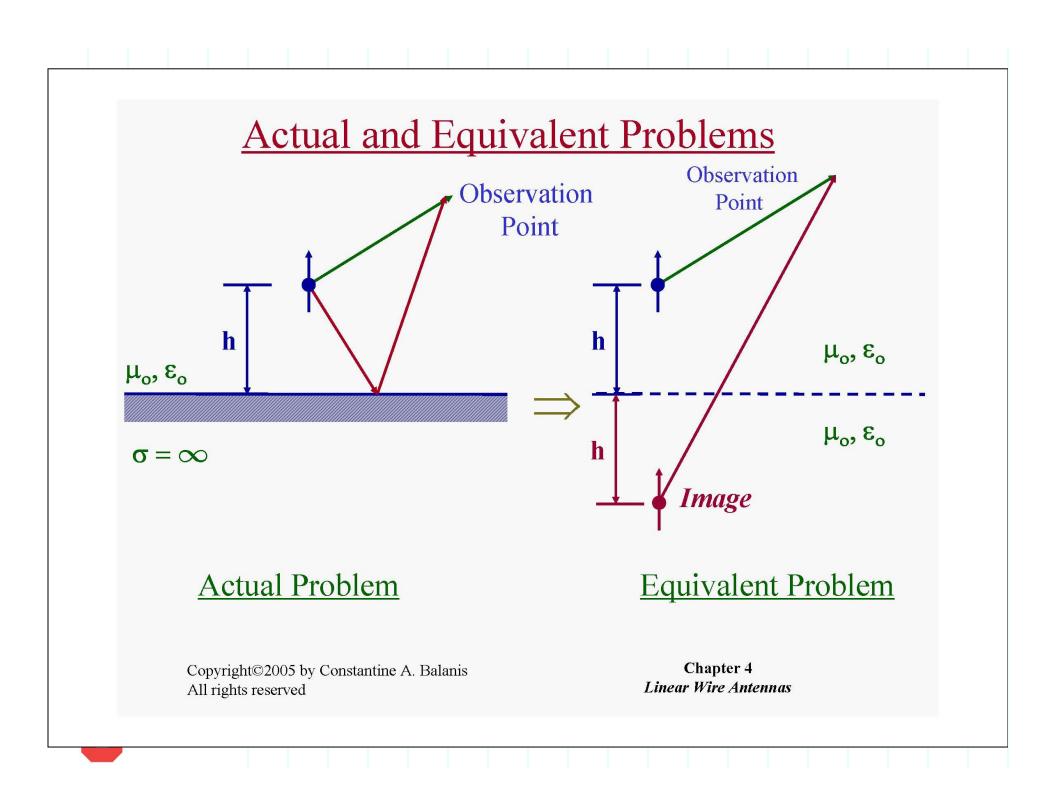
Copyright©2005 by Constantine A. Balanis All rights reserved

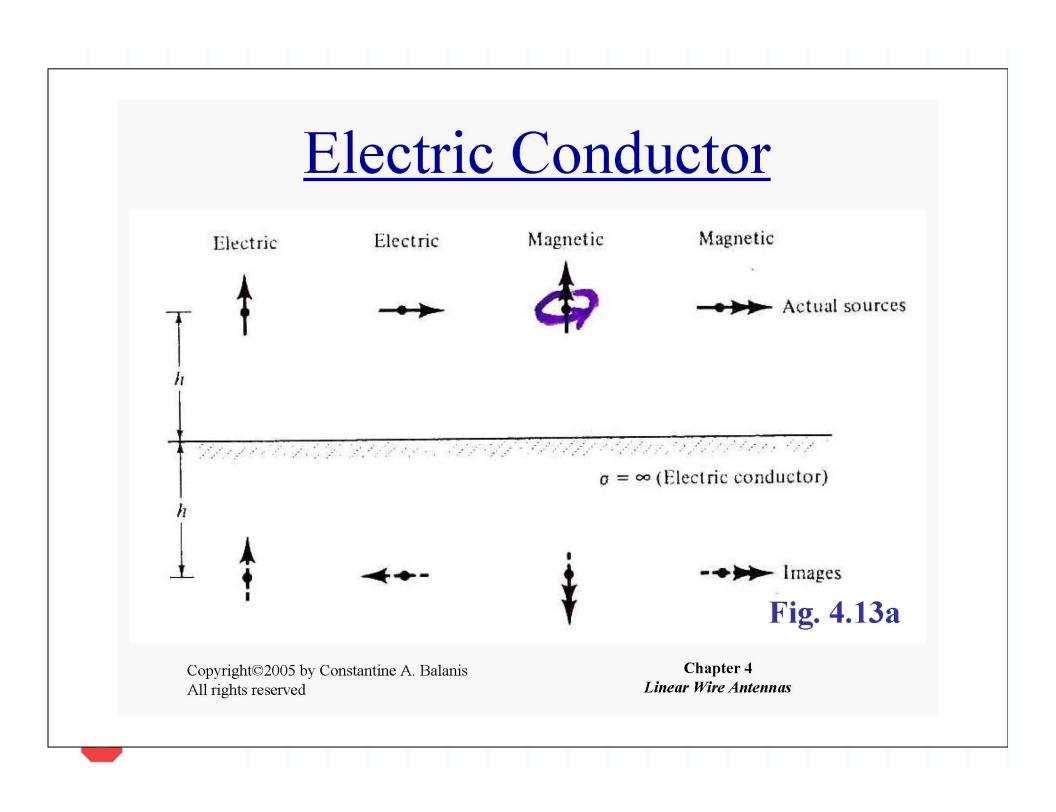


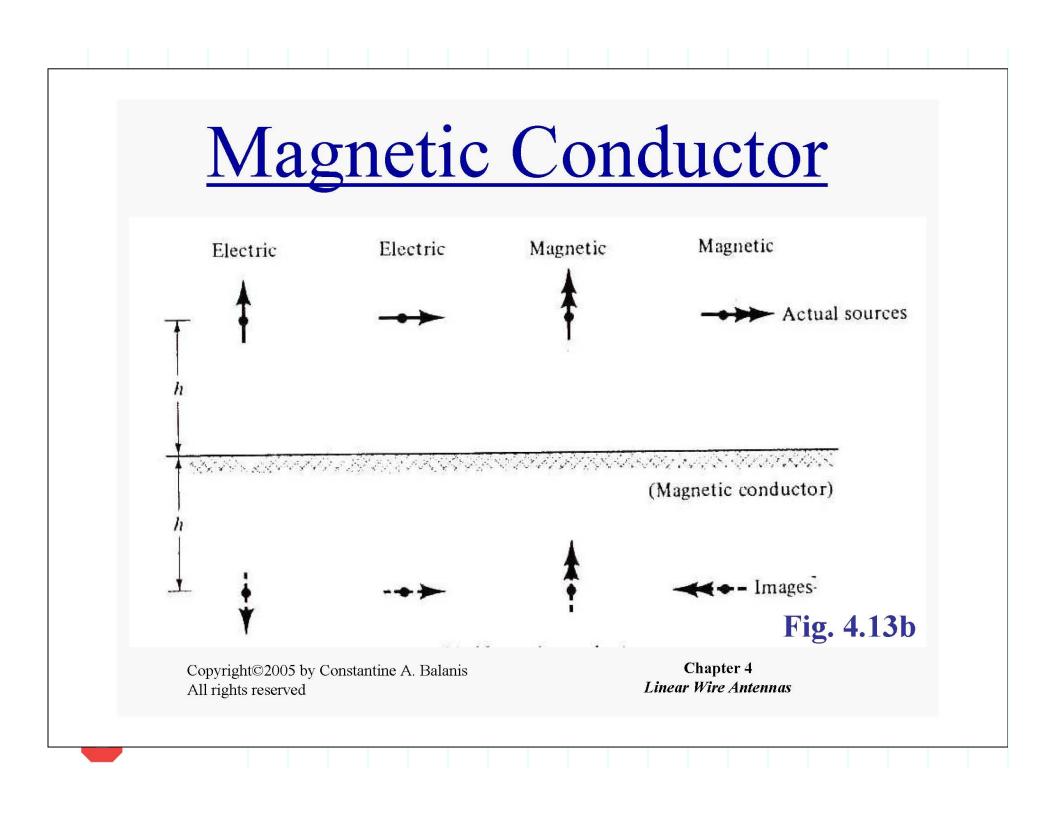
All rights reserved

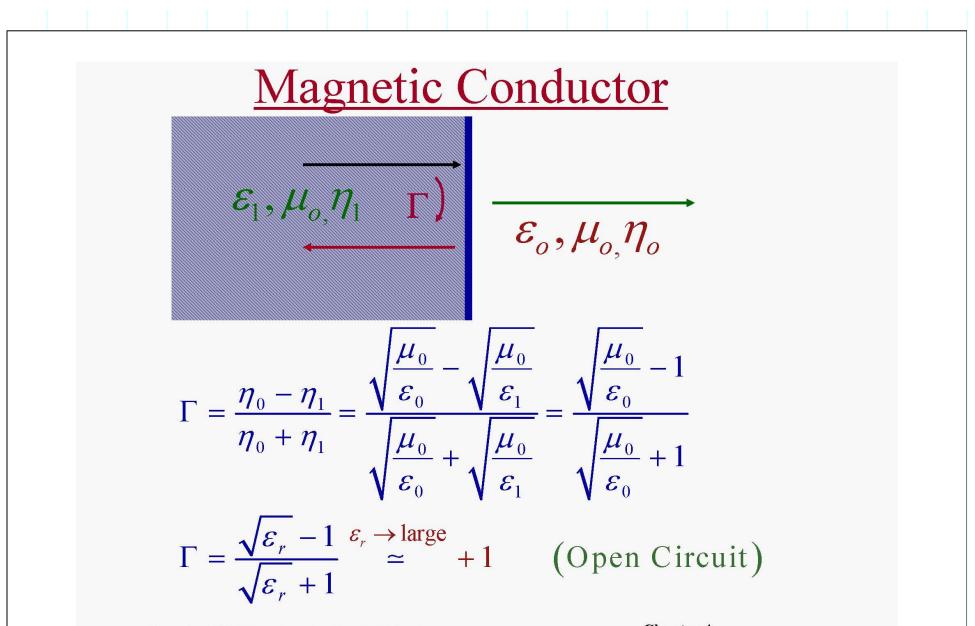
Field Components at Point of Reflection



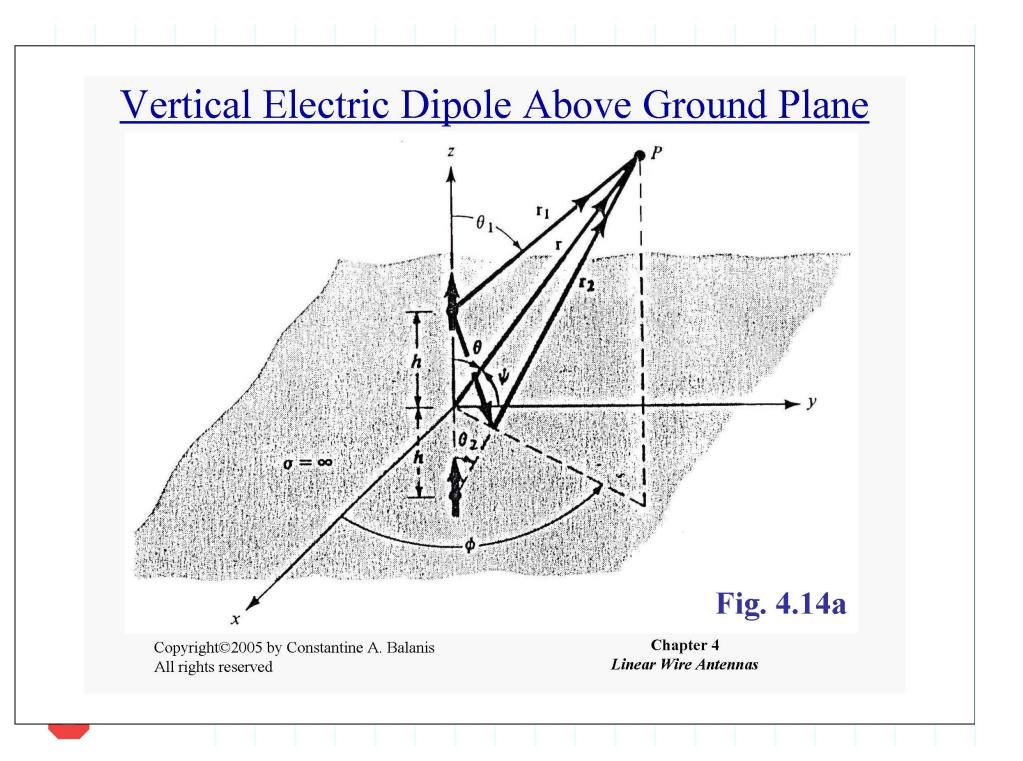


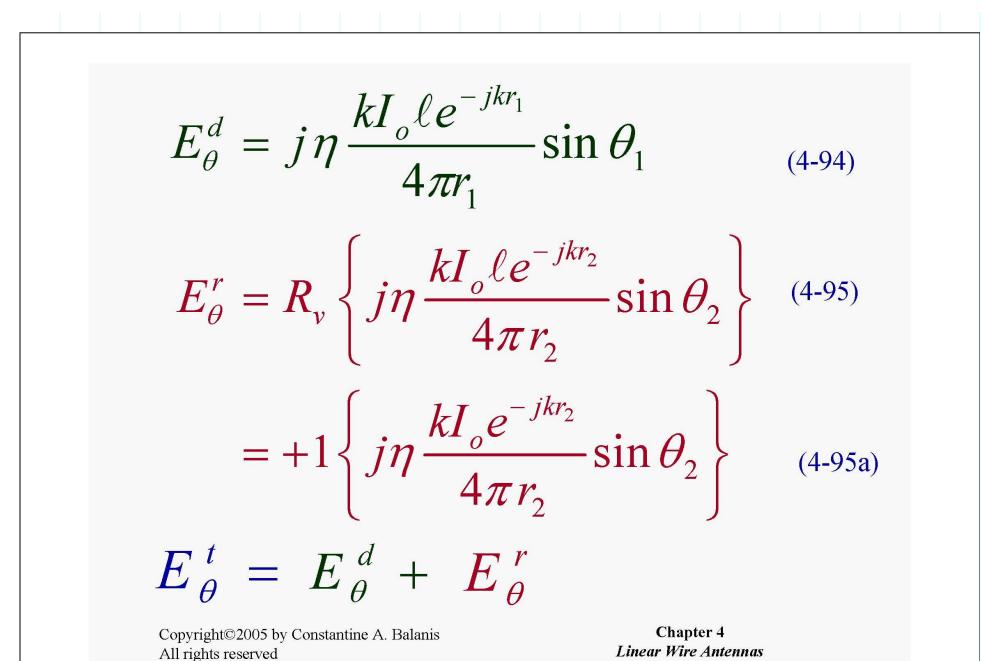




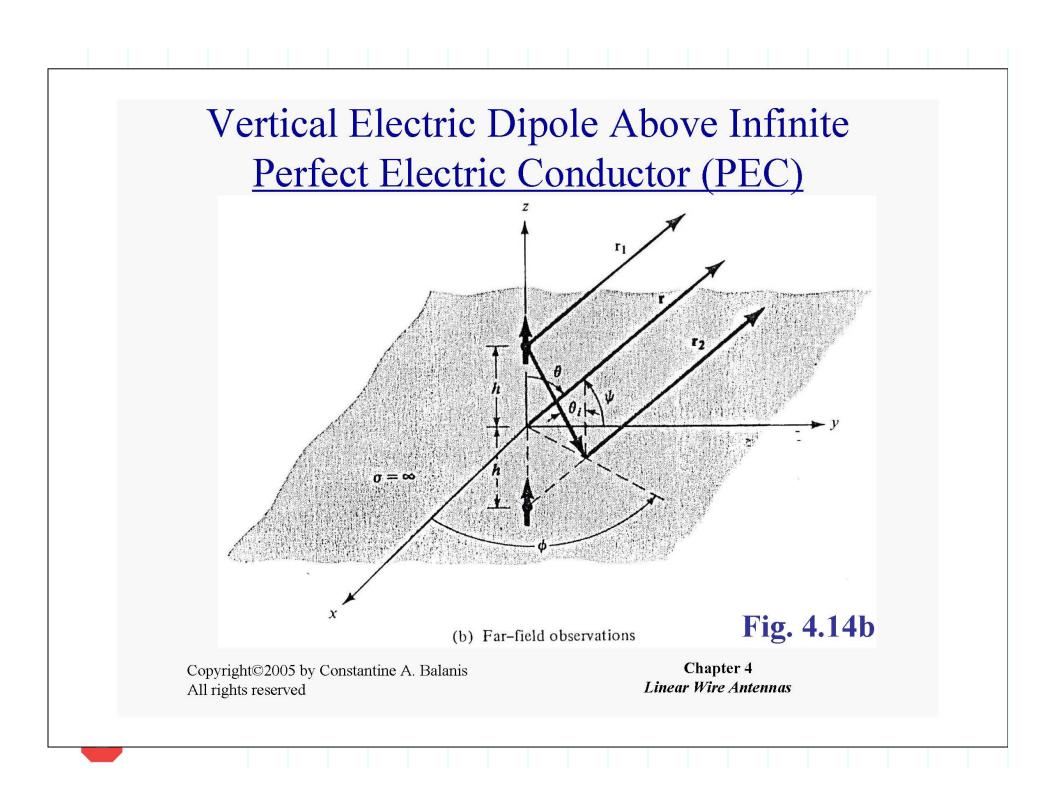


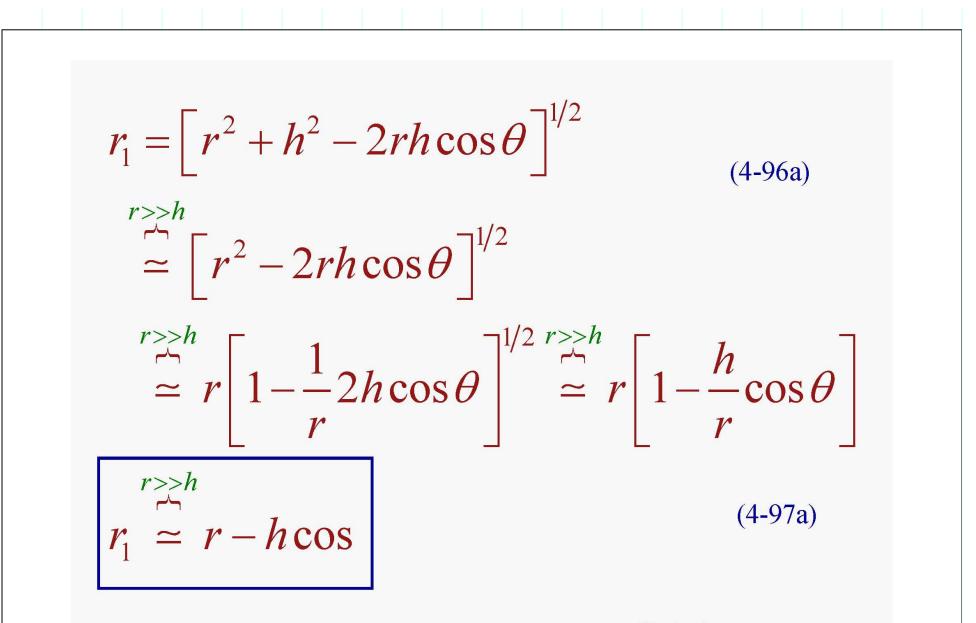
Copyright©2005 by Constantine A. Balanis All rights reserved





Linear Wire Antennas





Copyright©2005 by Constantine A. Balanis All rights reserved

$$r_{2} = \left[r^{2} + h^{2} - 2rh\cos(\pi - \theta)\right]^{1/2}$$

$$= \left[r^{2} + h^{2} + 2rh\cos\theta\right]^{1/2} \qquad (4-96b)$$

$$r \ge h$$

$$\simeq \left[r^{2} + 2rh\cos\theta\right]^{1/2} = r\left[1 + \frac{1}{r}2h\cos\theta\right]^{1/2}$$

$$r_{2} \xrightarrow{r \ge h} r\left[1 + \frac{h}{r}\cos\theta\right] = r + h\cos\theta \qquad (4-97b)$$

Copyright©2005 by Constantine A. Balanis All rights reserved

Far-Field Approximations

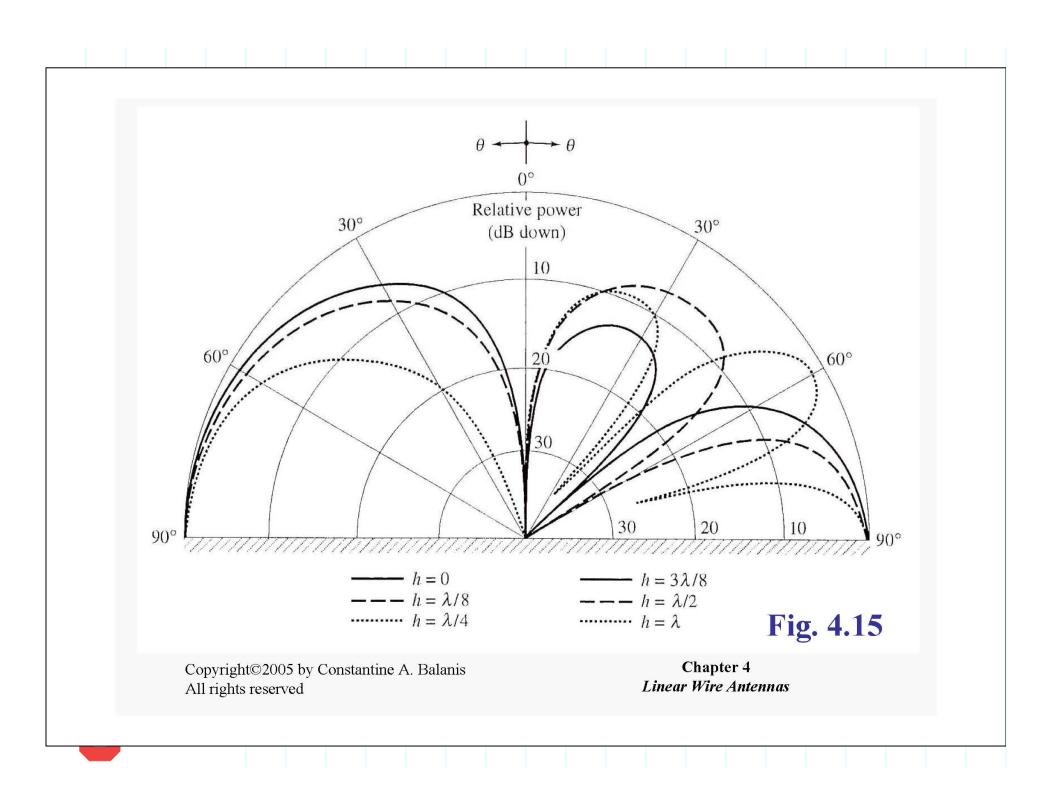
 $r_{1} = r - h\cos\theta$ for phase terms (4-97a,b) $r_{2} = r + h\cos\theta$

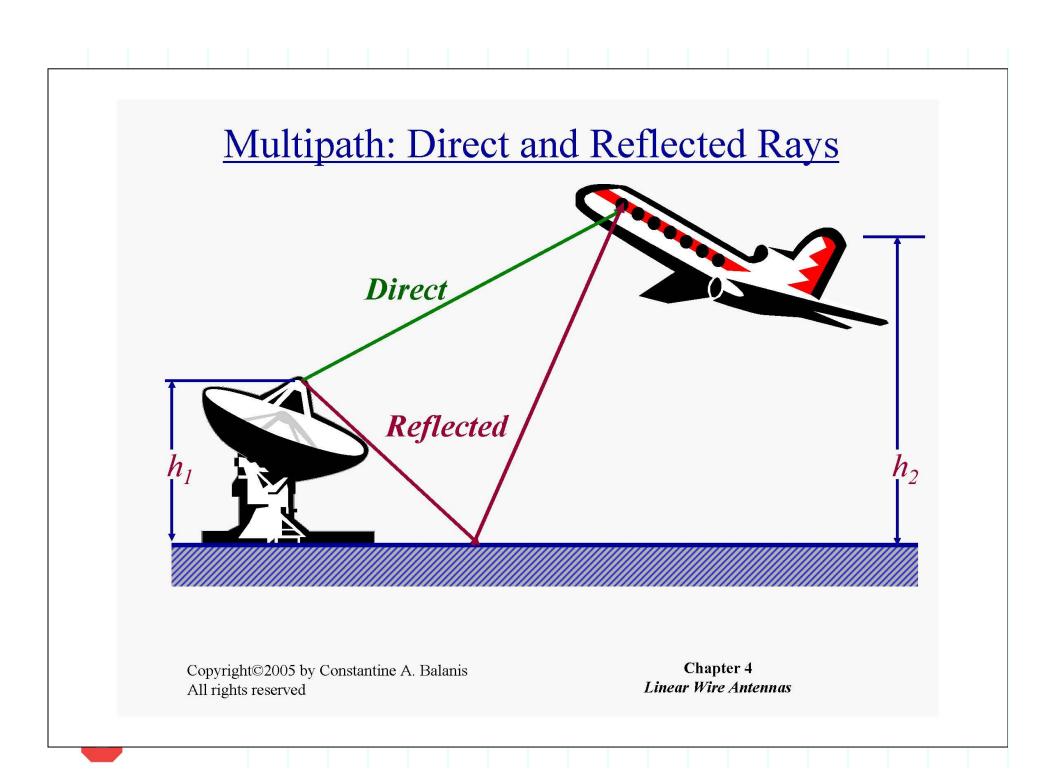
$r_1 \cong r_2 \cong r$ } for amplitude terms (4-98)

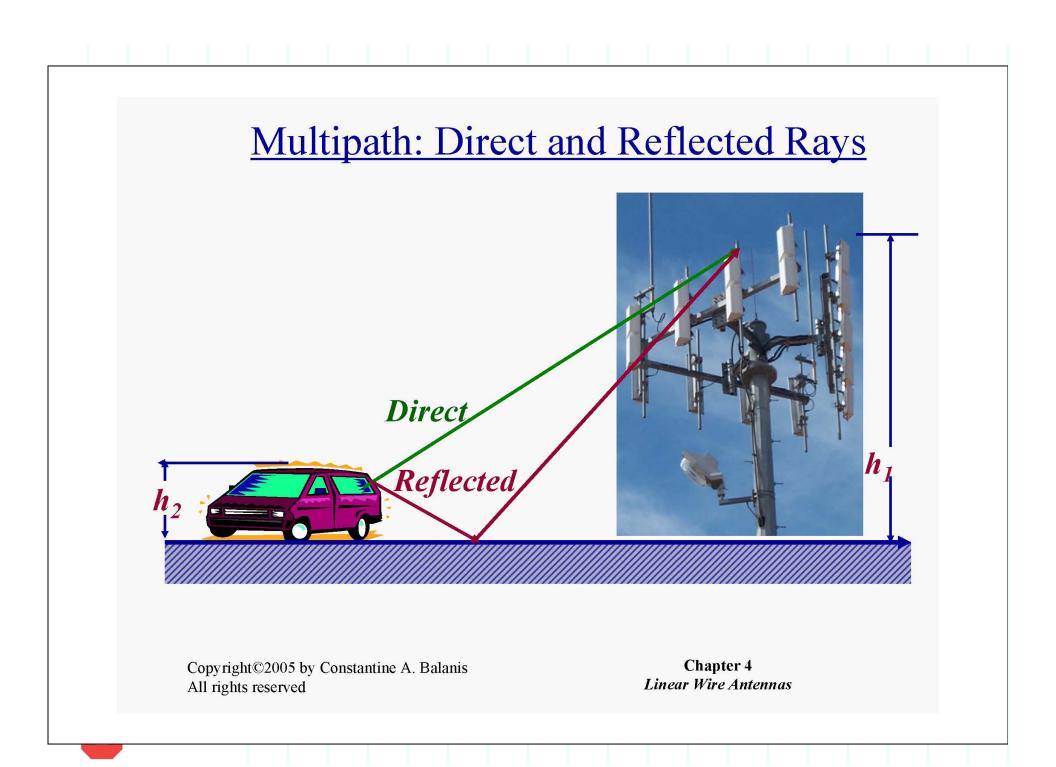
 $\theta_1 \cong \theta_2 \cong \theta$

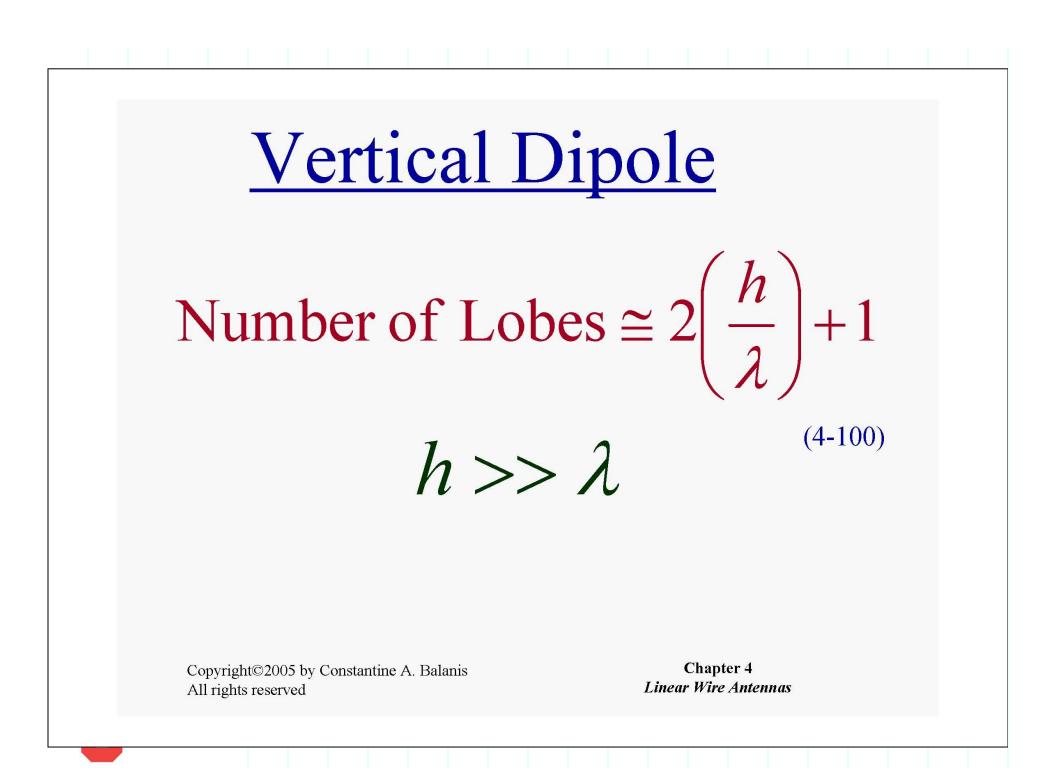
Copyright©2005 by Constantine A. Balanis All rights reserved

 $E_{\theta} = j\eta \frac{kI_{o}\ell e^{-jkr}}{4\pi r} \sin\theta \left\{ 2\cos(kh\cos\theta) \right\}$ Array Factor Element Factor $z \ge 0$ z < 0 $E_{\theta} = 0$ (4-99)**Chapter 4** Copyright©2005 by Constantine A. Balanis Linear Wire Antennas All rights reserved









 $P_{rad} = \bigoplus \underline{W}_{av} \cdot d\underline{s}$ S $2\pi \pi/2$ $= \int \int \underline{W}_{rad} \cdot \hat{a}_r r^2 \sin\theta d\theta d\phi$ $P_{rad} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \frac{2}{2\eta} |E|^2 r^2 \sin\theta d\theta d\phi$ (4-101) (4-101)

Copyright©2005 by Constantine A. Balanis All rights reserved

Effect of Imperfectly Conducting, Flat Earth

• To improve the radiation efficiency at these frequencies, radial wires or metallic disks are sometimes placed on the ground to simulate a perfectly conducting ground plane.

Copyright©2005 by Constantine A. Balanis All rights reserved

Examples of Antennas on Cellular and Cordless Telephones, Walkie-Talkies, and CB Radios

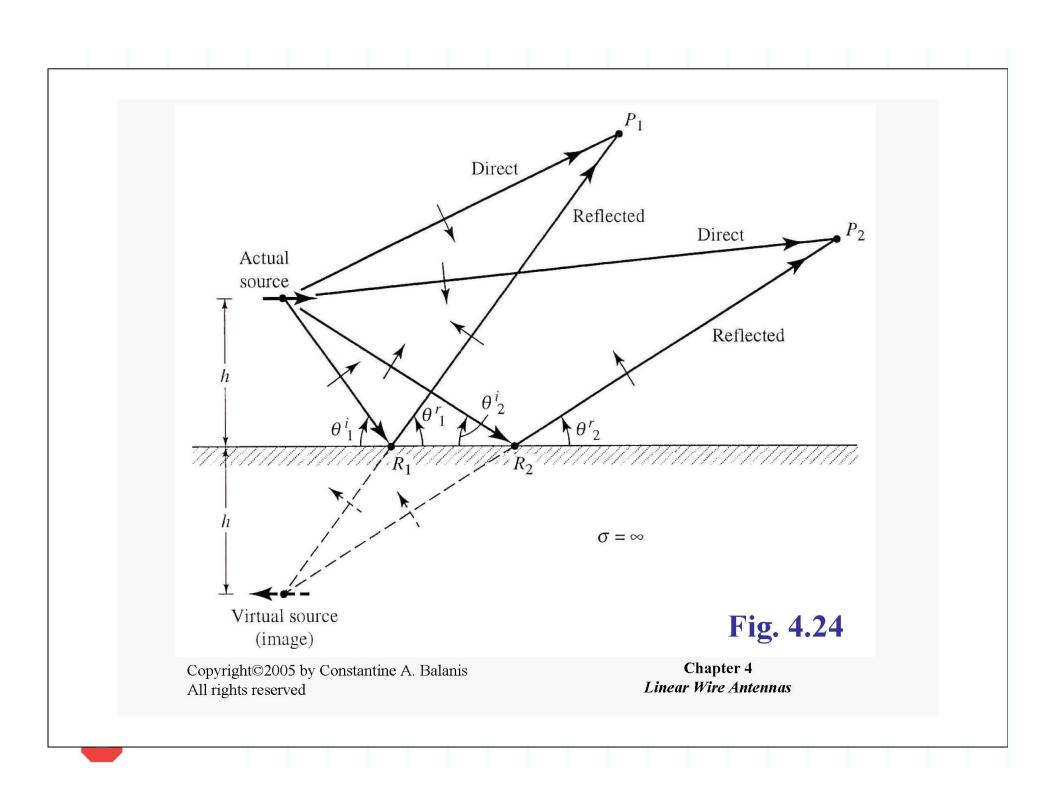
Triangular Array Of Linear Dipoles For Wireless Mobile Communication Base Stations

Fig. 4.23

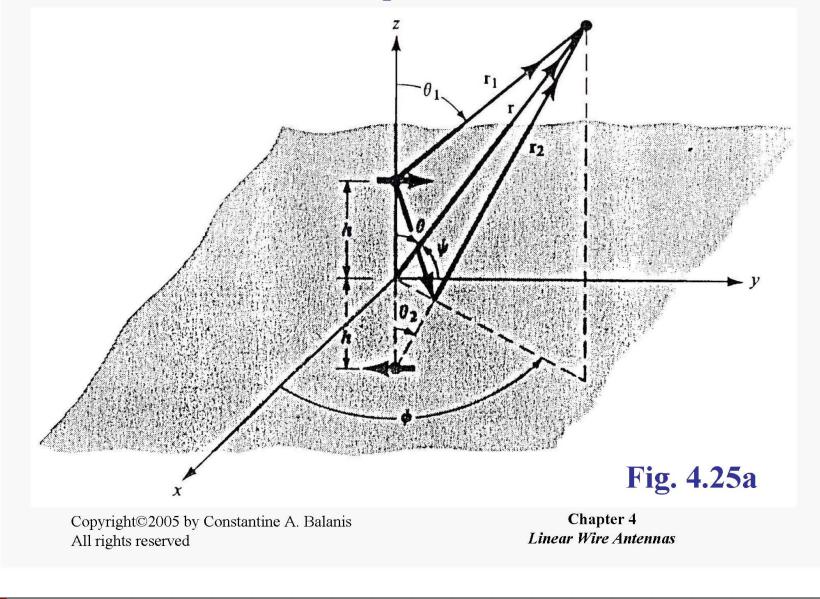
Copyright©2005 by Constantine A. Balanis All rights reserved

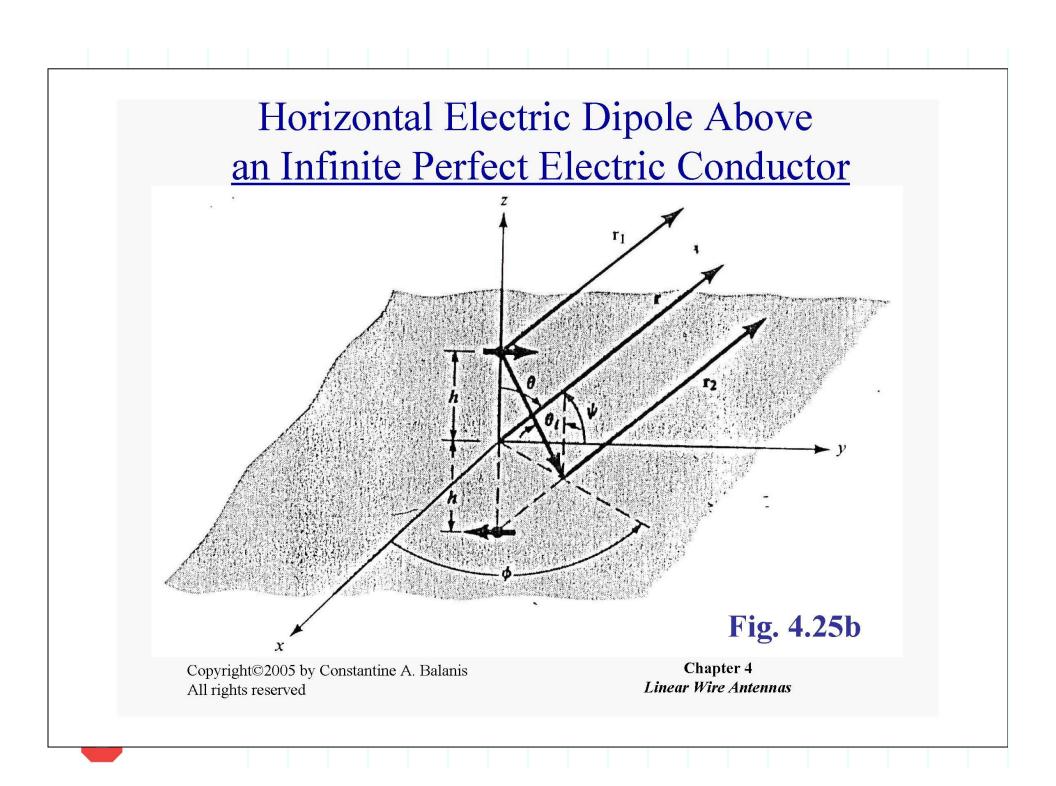
Horizontal Polarization

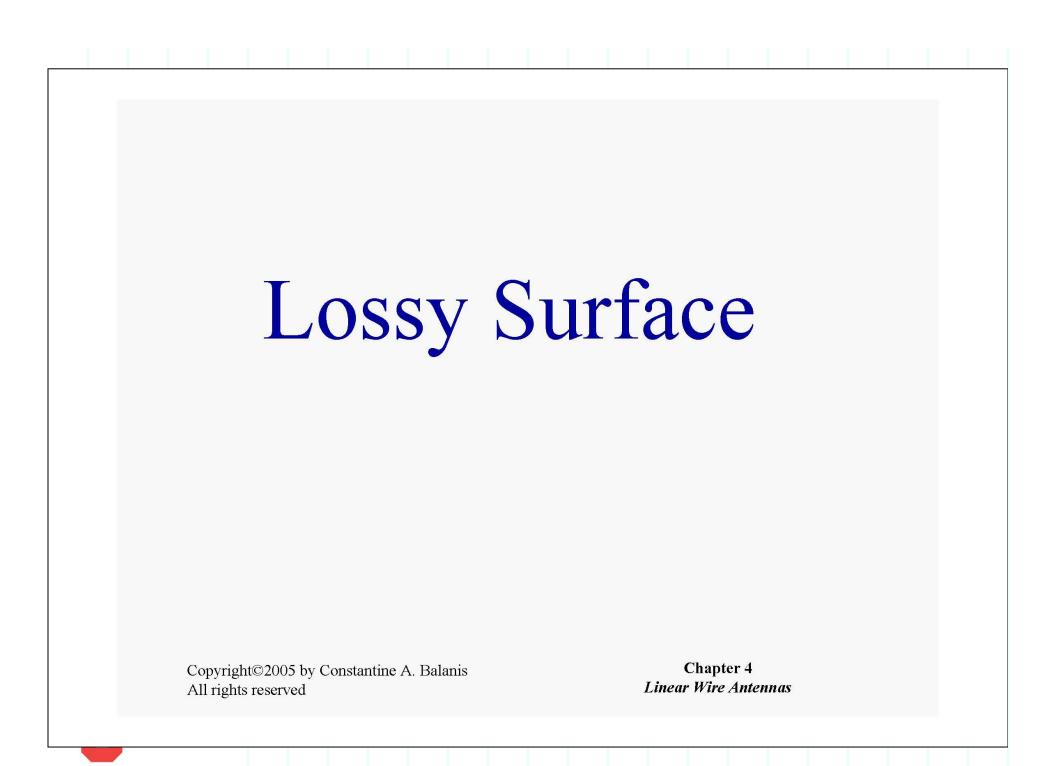
Copyright©2005 by Constantine A. Balanis All rights reserved



Horizontal Electric Dipole Above Ground Plane







Modeling of the Effect of Earth on Antenna Systems

- An obstacle that is almost always present in an antenna system is the earth.
- The earth is <u>NOT</u>
 - -perfectly conducting

-flat

Copyright©2005 by Constantine A. Balanis All rights reserved

Effect of Imperfectly

Conducting, Flat Earth

- The assumption of a flat earth is a good engineering approximation for observation angles greater than 3 degrees above the horizon.
- Antenna characteristics (especially radiation efficiency) at LF and MF (below 3 MHz) are profoundly and adversely affected by the lossy earth.

Copyright©2005 by Constantine A. Balanis All rights reserved

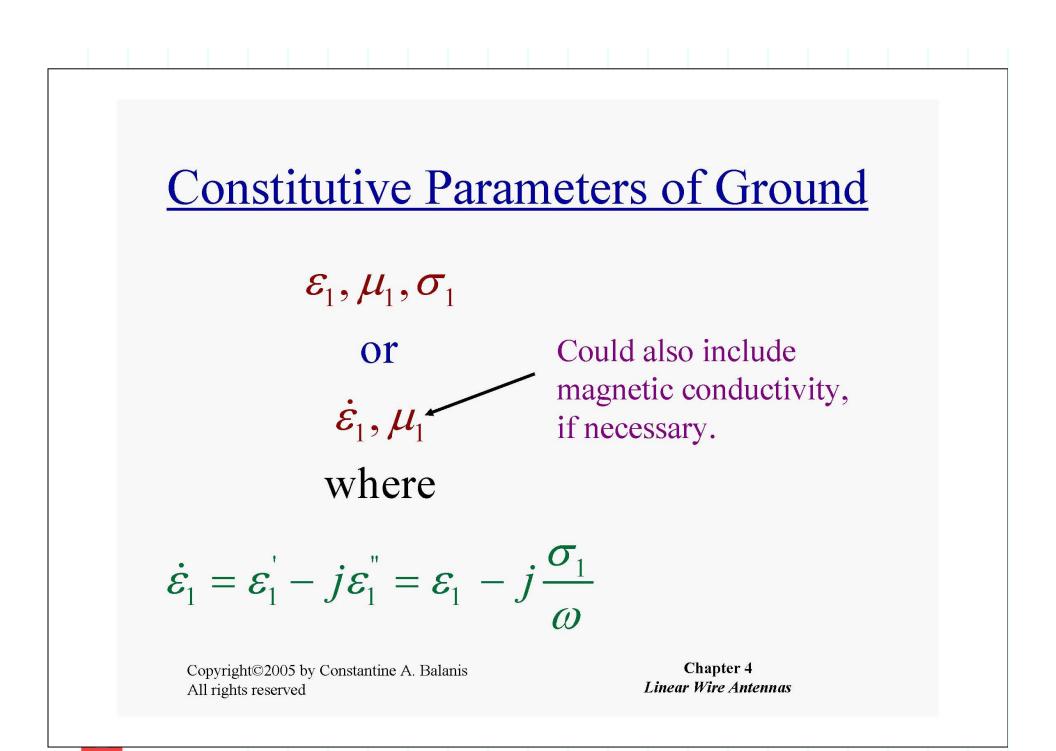
Effect of Imperfectly Conducting, Flat Earth

• To improve the radiation efficiency at these frequencies, radial wires or metallic disks are sometimes placed on the ground to simulate a perfectly conducting ground plane.

Copyright©2005 by Constantine A. Balanis All rights reserved

Constitutive Parameters of Ground $\varepsilon_0, \mu_0, \sigma = 0$ _____ $\varepsilon_1, \mu_1, \sigma_1$

Copyright©2005 by Constantine A. Balanis All rights reserved



Effect of Imperfectly Conducting, Flat Earth

- For horizontal polarization:
 - 1. The phase of the reflection coefficient (R_h) is exactly 180° for PEC ground planes and near 180° for non-PEC ground planes.
- For vertical polarization:
 - *1.* $R_v = +1$ for PEC ground plane, but is very different for non-PEC ground plane.
 - 2. For $\theta_i = 90^\circ$, $R_v = -1$ for non-PEC ground plane. This causes a null in the pattern which does not occur for PEC ground plane.

Copyright©2005 by Constantine A. Balanis All rights reserved

