
3. The Finite-Difference Time-
Domain Method (FDTD) 

The Finite-Difference Time-Domain method (FDTD) is today’s one of the most 
popular technique for the solution of electromagnetic problems. It has been successfully 
applied to an extremely wide variety of problems, such as scattering from metal objects and 
dielectrics, antennas, microstrip circuits, and electromagnetic absorption in the human body 
exposed to radiation. The main reason of the success of the FDTD method resides in the fact 
that the method itself is extremely simple, even for programming a three-dimensional code. 
The technique was first proposed by K. Yee, and then improved by others in the early 70s.  

 

Theory 

The theory on the basis of the FDTD method is simple. To solve an electromagnetic 
problem, the idea is to simply discretize, both in time and space, the Maxwell’s equations with 
central difference approximations. The originality of the idea of Yee resides in the allocation 
in space of the electric and magnetic field components, and the marching in time for the 
evolution of the procedure. To better understand the theory of the method, we will start 
considering a simple one-dimensional problem. Assume, at this stage, “free space” as 
propagation medium. In this case, Maxwell’s equations can be written as 
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In the one-dimensional case, we can use only Ex and Hy, and (1), (2) can be rewritten 
as 
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that represents a plane wave traveling in the z direction. 



 Yee’s scheme consists in considering Ex and Hy shifted in space by half a cell and in 
time by half a time step when considering a central difference approximation of the 
derivatives. In such a case, equations (3) and (4) can be written as 
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 Equations (5) and (6) show the usefulness of Yee’s scheme in order to have a central 
difference approximation for the derivatives. In particular, the left term in equation (5) says 
that the derivative of the E field at time n∆t can be expressed as a central difference using E 
field values at times (n+1/2)∆t and (n-1/2)∆t. The right term in equations (5) approximates 
instead the derivative of the H field at point k∆x as a central difference using H field values at 
points (k+1/2)∆x and (k-1/2)∆x. This approximations oblige us to calculate always the E field 
values at points …, (k-1) ∆x, k ∆x, (k+1) ∆x, … and times …, (n-3/2) ∆t, (n-1/2) ∆t, 
(n+1/2) ∆t, … and to calculate always the H field values at points …, (k-3/2) ∆x, (k-1/2) ∆x, 
(k+1/2) ∆x, … and times …, (n-1) ∆t, n ∆t, (n+1) ∆t, … 

 This scheme is known as “leap-frog” algorithm. Practically, it means that to 
approximate Maxwell’s equations in space and time using this algorithm, one should calculate 
first all H field values, then all E field values, remembering always that E and H are shifted 
also in space by half of the discretization ∆x. Figure 1 shows schematically the algorithm. 

 

 

 

 

 

 

 

 

 

Figure 1. Yee’s one-dimensional scheme for updating EM fields in space and time. 
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 The explicit FDTD equations can be derived from (5) and (6) obtaining 
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 To avoid computational problems due to the very different amplitudes of E and H, 
Taflove introduced a normalization of the E field: 
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 Equations (7) and (8), adopting this substitution and dropping the symbol “~” from 
now on, become 
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 These equations can be directly implemented in a computer code. Note that the “1/2” 
in equations (10) and (11) do not need to be implemented in the computer code. The half a cell 
and half a time step are necessary in equations (10) and (11) just to remind us the physical 
definitions of E and H, and to remind us that E and H are actually offset by half a cell and half 
a time step. This information, anyway, will never appear in our coding. To implement the 
code for the calculation of the fields obeying to equations (10) and (11) we need to: 

a)  Define the size KE of the arrays E and H that, once we have chosen the spatial 
resolution ∆z, will correspond to the absolute size of the computational domain; 

b)  Determine the time step necessary according to our resolution and excitation 
signal; 

c)  Implement a cycle to compute the fields for a certain number of time steps. Within 
the cycle, we need to include: 

d)  A cycle to calculate the various EX(K) according to equation (10) for all 
the cells of the domain KE; 



e)  The excitation signal at the source point KS; 

f)  A cycle to calculate the various HY(K) according to equation (11) for all 
the cells of the domain KE; Note that in the computer code we do not need 
to include the information relative to the half a cell shift (i.e., the “1/2”) 
since this is only the interpretation that we need to give to the field, and 
does not correspond to any practical modification in the algorithm. 

 

The problem is now: how to choose ∆z and ∆t. How fine should our resolution be? 
The first parameter to choose is generally the resolution Dz. It has been verified that at least 10 
cells per wavelength are necessary to ensure an adequate representation. The wavelength to 
consider is the smallest wavelength in the simulation. We did not consider yet the presence in 
our simulations of dielectrics, but we will shortly see that the presence of dielectric will just 
slightly modify the FDTD scheme given by equations (10) and (11). Anyway, it is well known 
that the signal wavelength is smaller in dielectrics with higher dielectric constants and losses. 
Therefore, in the case we have to consider dielectrics, we should first calculate the wavelength 
in the dielectric with higher dielectric constant and losses, and then consider the cell size to be 
about ten times smaller than this value.  

Once the cell size has been chosen, the time step is also chosen according to stability 
considerations. For stability reasons, a field component cannot propagate more than one cell 
size in the time step ∆t. This means that 
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since the wave travels at the speed of the light c0. This is the stability condition for one-
dimensional problems. It can be proven that, in general, the stability condition (Courant 
condition) is given by 
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with d=1, 2, or 3 for one-, two-, or three-dimensional problems, respectively, and ∆ the 
smallest cell size. 

 A common choice for ∆t (in one-, two-, or thee-dimensional problems) is anyway 
given by 
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Source Signals 

 We have mentioned how to choose the cell-size ∆z with respect to the minimum 
signal wavelength in the simulation. This makes sense in the case of sinusoidal excitation, but 
what about other signal waveforms that we may need to handle? If, for example, we have to 
consider a Gaussian pulse as excitation signal, how should we proceed to determine the cell 
size? A spectrum of a Gaussian pulse is, again, a Gaussian and, therefore, it contains infinite 
frequencies. In this case, we should choose the cell size according to the maximum frequency 
of interest. The remaining part of the spectrum will be filtered by the mesh, incapable of 
describing the propagation that will require smaller cell size (and time step). One should 
anyway be careful in choosing well the input signal, in the sense that energy associated with 
frequencies incapable of propagating should be small with respect to the others. If this is not 
satisfied, the propagating signal in our simulation may be affected significantly by noise, given 
by the frequencies that cannot propagate. 

 A wide variety of signals have been used as source in FDTD meshes. The most 
common are the sinusoidal signal and the Gaussian pulse. Sometimes, when a sinusoidal 
signal need to be used, it is preferred to use a modulated signal in order to avoid high 
frequency at the beginning of the simulation. Other choices, in order to reduce the error, 
consist in using the so called "soft" source, where the source signal of interest is added in the 
source point to the previous value of the field. In other words, for example, if the following is 
an "hard" source 

EX(KS) = SIN (OMEGA* T) 

the following is instead a "soft" source 

EX(KS) = EX(KS) + SIN (OMEGA* T) 

 

 

 

 

 

 

 

 

 



Basic Example of 1D FDTD Code in Matlab 

The following is an example of the basic FDTD code implemented in Matlab. The code uses a 
pulse as excitation signal, and it will display a "movie" of the propagation of the signal in the 
mesh. If you are not using a workstation, Matlab might have difficulties in handling the movie 
due to the memory requirements. In this case you should use the second code given, where 
instead of the movie the code plots the e-field at each time step waiting for you to press a key 
to plot the next time step. 

% This is a 1D FDTD simulation with pulse
% It displays a "movie" of the signal
% Size of the FDTD space
clear;
ke=50;

% Position of the source
ks=ke/2;

% Number of time steps
nsteps=100;

% Cell size and time stepping
c0=3.e8;
dx=0.01;
dt=dx/(2.*c0);

% Constants
cc=c0*dt/dx;

% Initialize vectors
ex=zeros(1,ke);
hy=zeros(1,ke);

% Gaussian pulse
t0=20;
spread=8;

% Start loop
M=moviein(nsteps);
for t=1:nsteps

% E field loop
for k=2:ke-1

ex(k)=ex(k)+cc*(hy(k-1)-hy(k));
end

% Source
ex(ks)=exp(-.5*((t-t0)/spread)^2);

% H field loop
for k=1:ke-1

hy(k)=hy(k)+cc*(ex(k)-ex(k+1));
end

plot(ex);axis([1 ke -2 2]);
M(:,t) = getframe ;

% input('')



end
movie(M,1);

 

The following is the code without movie, but with plot at each time step and wait for you to 
press a key to continue. Of course, you can modify it to plot with the desired number of time 
steps interval between plots. 

% This is a 1D FDTD simulation with pulse
% It displays a "movie" of the signal
% Size of the FDTD space
clear;
ke=50;

% Position of the source
ks=ke/2;

% Number of time steps
nsteps=100;

% Cell size and time stepping
c0=3.e8;
dx=0.01;
dt=dx/(2.*c0);

% Constants
cc=c0*dt/dx;

% Initialize vectors
ex=zeros(1,ke);
hy=zeros(1,ke);

% Gaussian pulse
t0=20;
spread=8;

% Start loop
for t=1:nsteps

% E field loop
for k=2:ke-1

ex(k)=ex(k)+cc*(hy(k-1)-hy(k));
end

% Source
ex(ks)=exp(-.5*((t-t0)/spread)^2);

% H field loop
for k=1:ke-1

hy(k)=hy(k)+cc*(ex(k)-ex(k+1));
end

plot(ex);axis([1 ke -2 2]);
input('Type')

end

 



Understanding the Codes 

We can now spend a few words on how the codes have been implemented, and the 
correspondence of equations (10) and (11) with those programmed. We can observe that, 
basically, we have just "dropped" the 1/2 in the position of the field H. The correspondence 
between physical and computer variables is indicated in the following figure. 

 

 

 

 

 

 

 

 

Figure 2. Correspondence between "physical arrays" and "programmed arrays". 

 

Boundary Conditions 

From the previous discussion, it is not clear what happens at the mesh termination. Of 
course, we cannot simulate the propagation of the signal indefinitely, and we need to terminate 
somehow the FDTD grid. The problem does not exist in the case of a spatially limited 
structure, like a waveguide, a resonator, etc., where we need to model a region that “trap” the 
field inside. In most of the problems, however, we need to simulate open space regions. In 
these cases, since our simulation region MUST be limited, we need to find a way to 
“simulate” the open space. These boundary conditions are called RADIATION BOUNDARY 
CONDITIONS (RBCs) or ABSORBING BOUNDARY CONDITIONS (ABCs). 

In 1D (the formulation in eq. (10) and (11)) the problem can be easily solved. We can 
observe, in fact, that if we use ∆t given by (14) (∆t=∆z/(2 c0)), since the field travels at the 
speed of the light c0, in one time step the field will travel only half a cell. This means that to 
entirely cross one cell, two time steps are necessary. The absorbing boundary condition for the 
1D case can be therefore expressed by 
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for the left side of the mesh, and by 
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for the right side of the mesh. With these conditions, in the 1D simulation described in the 
previous section the wave will be completely “absorbed” by the termination. Of course, 
“completely” means actually “relatively”, since for numerical errors some small reflections 
from the boundary (noise) will be observed. 

 This is the simplest approach to derive an absorbing boundary condition. Several 
ABCs have been proposed in the literature that resort to analytical approximations of the wave 
equation or use fictitious absorbing materials to physically absorb the outgoing wave. One 
traditional ABC is that developed by G. Mur. The boundary condition proposed by Mur can 
be explained by considering the wave equation that the electromagnetic field obey. 
Considering the 1D case, we can write the following wave equation: 
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 This equation can be rewritten as 
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 Engquist and Madja have shown that an absorbing boundary condition for the left side 
of the grid (z=0) can be derived applying the condition 
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while on the right side of the mesh (z=KE) the boundary condition can be derived by using 
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 The idea of Mur is to express the derivatives around a point that is half a cell distant 
from the boundary calculated at time n. In this case, we will be able to express the derivatives 
in equations (19) and (20) by using the electric field values at the points and times known by 
the simulation. Consider, for example, equation (19) that we should use to derive the boundary 
condition at the left side of the mesh (z=0). We obtain, using central differences, 
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and, therefore, 
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 Simplifying, and solving the equation for Ex1
n+1/2, we obtain 
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 Applying the same approximation to the right boundary, we obtain 
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 Equations (21) and (22) can be applied directly in the code to update the left and right 
points in the mesh, respectively. 

 

FDTD in Dielectrics 

 So far, we have considered the one-dimensional FDTD algorithm in free space. How 
the presence of a dielectric will affect the algorithm? 

 We can derive the modification we need to include in the algorithm by considering, 
again, Maxwell’s equations. For a generic medium, Maxwell’s equations can be written as 
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In 1D, these equations can be rewritten as follows: 
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Changing the variable Ex according to equation (9), we obtain 
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At this point, we can just discretize equations (27) and (28) in the same we have done 
it for deriving equations (10) and (11). We obtain, after a few simple manipulations, 
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Equation (30) is identical to equation (11), since we did not consider the possibility to 
have magnetic materials. Magnetic materials can be included easily modify equation (28) first, 
and the discretizing it as done for deriving equation (28). 

Note that equations (29) and (30) are more general than equations (10) and (11). 
Equations (10) and (11) are obtained by simply imposing εr=1 and σ=0 in equations (29) and 
(30) and, therefore, we can focus on these last two equations for developing the general 1D 
FDTD algorithm. 

 

Implementation of the 1D FDTD Algorithm for Generic Media. 

As we have said before, the superscripts and subscripts containing '1/2' can be 
simplified in the computer implementation of the algorithm. We should always remember 
that, anyway, the half a cell and half a time step are "physically" present in the algorithm and, 
therefore, they should be taken into account in the interpretation of the results. 

A computer version of equations (29), (30) is the following: 

EX(K) = CA(K) * EX(K) + CB(K) * (HY(K-1) - HY(K))   (31) 

HY(K) = HY(K) + CC * (EX(K) - EX(K+1))  ,   (32) 

with  
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 Each cell will have its own εr and σ, that we need to store somewhere, in order to 
calculate the coefficients CA and CB for each cell of the mesh. The coefficient CC is just a 
constant, not having any dependence from the dielectrics inside the mesh. A basic skeleton of 
the code is given in the following. 

 
 
BASIC SKELETON FOR 1D FDTD CODE FOR GENERIC MEDIA 
 
Define the cell size ∆z to use (in meters) (typically, ∆z=λmin/10) 
Define the time step ∆t to use (in seconds) (typically, ∆t=∆z/2 c0) 
Define how many cells will constitute the mesh (decide KE) 
Define how many time steps for the simulation (decide NMAX) 
Initialize the vectors CA and CB according to the dielectrics in the mesh 
Initialize the variable CC 
FOR  N=1 : NMAX 

FOR K=2 : KE 
EX(K) = CA(K) * EX(K) + CB(K) * (HY(K-1) - HY(K))  

END 
Apply an electric field source somewhere in the mesh (i.e., sin, pulse, etc.) 
Apply Absorbing Boundary Conditions (if any) 
FOR K=1 : KE-1 

HY(K) = HY(K) + CC * (EX(K) - EX(K+1))   
END 

END 
 
 

 


