Ex:

- a) Calculate the value of R_L that would absorb maximum power.
- b) Calculate that value of maximum power R_L could absorb.

Sol'n: a) $R_L = R_{Th}$ for max power transfer

We find R_{Th} by looking into the terminals where R_L is connected (but without R_L) with the two independent sources turned off.

b) max pwr =
$$\left(\frac{V_{Th}}{2}\right)^2$$

$$\frac{R_{Th}}{R_{Th}}$$

We find V_{th} as the open circuit voltage across the terminals where R_{L} is connected.

We find VTh by using superposition.

case I: 30 V on, 180 mA off

Since no current flows, there is no v-drop across the R1s.

$$- V_{Th1} = -30V \quad (-v \text{ src})$$

Note: Since we will square v_{Th} , the polarity we choose for measuring v_{Th} doesn't matter.

case II: 30V off, 180 mA on

No current flows in the 750 R and 150 R. Thus, there is no v-drop across these R1s.

The v-drop across the 100 Ω is equal to V_{Th2} .

We sum results to find VTh.

$$V_{Th} = V_{Th1} + V_{Th2}$$

$$V_{Th} = -30V + 18V = -12V$$

$$\max pwr = \left(\frac{V_{Th}}{2}\right)^2 = \frac{6^2}{1k} = 36 \text{ mW}$$