EX: \quad Find $\operatorname{Re}\left[\frac{6+j 3}{2-j 4} e^{j \mathrm{x}}\right]$, (i.e., find the real part) where " x " is real
ANS: $\quad 1.5 \cos (x+\pi / 2)$
SOL'N: We may take one of several different approaches to convert the quantity inside the brackets into the form $a+j b$ (where a is our final answer). We'll take the approach of rationalizing the fraction.

$$
\begin{aligned}
& \operatorname{Re}\left[\frac{6+j 3}{2-j 4} e^{j \mathrm{x}}\right]=\operatorname{Re}\left[\frac{6+j 3}{2-j 4} \frac{2+j 4}{2+j 4} e^{j \mathrm{x}}\right] \\
& \quad=\operatorname{Re}\left[\frac{12-12+j(24+6)}{2^{2}+4^{2}} e^{j \mathrm{x}}\right] \\
& \quad=\operatorname{Re}\left[\frac{j 30}{20} e^{j \mathrm{x}}\right]
\end{aligned}
$$

We now use Euler's formula to expand the complex exponential:

$$
\begin{aligned}
& =\operatorname{Re}\left[\frac{j 30}{20}\{\cos (\mathrm{x})+j \sin (\mathrm{x})\}\right] \\
& =\operatorname{Re}[-1.5 \sin (\mathrm{x})+j 1.5 \cos (\mathrm{x})]
\end{aligned}
$$

Our final answer is the real part, which we may express in several ways.

$$
\begin{aligned}
& \operatorname{Re}\left[\frac{6+j 3}{2-j 4} e^{j \mathrm{x}}\right]=-1.5 \sin (\mathrm{x}) \text { or } \\
& \operatorname{Re}\left[\frac{6+j 3}{2-j 4} e^{j \mathrm{x}}\right]=1.5 \cos (\mathrm{x}+\pi / 2)=1.5 \cos \left(\mathrm{x}+90^{\circ}\right)
\end{aligned}
$$

NOTE: A curious feature of this problem is that the fraction consisting of complex numbers is purely imaginary. We now examine this symbolically.

$$
k \cdot \frac{a+j b}{b-j a}=k \cdot \frac{j(b-j a)}{b-j a}=j k
$$

Whenever the numerator and denominator of a fraction have the above pattern, we will find that the result is purely imaginary. Note the necessary minus sign.

