Ex: If $\mathrm{f}(t)=2 \sin (\omega t+\pi / 3)$ find $\mathbf{P}[\mathrm{f}(t)]$, (i.e., find the phasor)
ANS: $\quad \mathbf{P}[\mathrm{f}(t)] \equiv \mathbf{F}=2 e^{-j \pi / 6} \equiv 2 \angle \pi / 6$
SOL'N: If we have a cosine, we use the standard identity for phasors:

$$
\mathbf{P}[A \cos (\omega t+\phi)]=A e^{j \phi} \equiv A \angle \phi
$$

For a sine, we multiply the standard identity by $-j$ (which is the phasor for a sine of magnitude one and zero phase shift):

$$
\mathbf{P}[\sin (\omega t)]=-j \equiv 1 \angle-90^{\circ}
$$

Thus, we have

$$
\mathbf{P}[\mathrm{f}(t)] \equiv \mathbf{F}=-2 j e^{j \pi / 3}
$$

The above is mathematically correct and works properly in solving problems, but we will apply identities to express the answer in standard form:

$$
-1=e^{j 180^{\circ}}=e^{-j 180^{\circ}}=e^{j \pi}=e^{-j \pi}
$$

NOTE: (We use whichever of $+180^{\circ}$ or -180° is most convenient.)

$$
j=e^{j 90^{\circ}}=e^{j \pi / 2}
$$

Applying the identities:

$$
\mathbf{F}=-2 j e^{j \pi / 3}=2 e^{-j \pi} e^{j \pi / 2} e^{j \pi / 3}=2 e^{-j \pi / 6} \equiv 2 \angle-\pi / 6 .
$$

