Ex: If $\mathbf{F}=(2.5+j 3.2)$ find $\mathbf{P}^{-1}[\mathbf{F}]$, (i.e., find the inverse phasor)
ANS: $\quad \mathbf{P}^{-1}[\mathbf{F}]=4.06 \cos \left(\omega t+52^{\circ}\right)$
SOL'N: We convert to polar form:

$$
2.5+j 3.2=\sqrt{2.5^{2}+3.2^{2}} e^{j \tan ^{-1}\left(\frac{3.2}{2.5}\right)} \approx 4.06 e^{j 52^{\circ}}
$$

Now use the standard inverse phasor identity:

$$
\mathbf{P}^{-1}\left[A e^{j \phi}\right]=A \cos (\omega t+\phi)
$$

NOTE: There is no math to do here-we just substitute the values of A and ϕ into the $\cos ()$.

Note: We don't know the value of ω for this problem. Thus, we just use a symbolic variable for ω. The value of ω is not part of a phasor. (The value of ω must be kept track of separately.)

Using the identity gives the answer:

$$
\mathbf{P}^{-1}[\mathbf{F}]=4.06 \cos \left(\omega t+52^{\circ}\right)
$$

NOTE: Mathematically, it is also correct to invert the given phasor in two pieces, with the real part giving a cosine term having no phase shift and the imaginary part giving a (negative) sine term having no phase shift:

$$
\mathbf{P}^{-1}[2.5+j 3.2]=2.5 \cos (\omega t)-3.2 \sin (\omega t)
$$

Although this answer is correct, it is usually easier to visualize a single sinusoid with a phase shift. The sum of the cos and sin terms is equal to the single cos with a phase shift given above. This follows from the observation that the sum of any number of sinusoids of the same frequency may be expressed as a single sinusoid of that frequency. (The challenging part is determining the magnitude and phase shift of the single sinusoid.)

