Ex: In the circuit below, based on the interpretation that an uncharged capacitance initially looks like a short circuit and finally like an open circuit, give a qualitative description of the current i over time.

ANS: When the switch is first closed, C looks like a short circuit. Hence at $\mathrm{t}=0^{+}, i$ can be found from voltage division to be 5 mA . As $\mathrm{t}->\infty$, C begins to look like an open circuit, in which case i can again be found from current division to be $i=3 \mathrm{~mA}$. Thus the asymptotic value of i is 3 mA . Consequently, i decreases smoothly from an initial value of 5 mA to a final value of 3 mA at a rate that depends on the time constant, $R_{t} C_{2}$, where R_{t} is the Thevenin equivalent resistance across C . For a small value of C , the decay will be fast; for a larger value of C , the decay will be slower.

