Ex:

After being open for a long time, the switch closes at t = 0.

Find v(t) for t > 0.

Sol'n: First, we find the characteristic roots for the circuit. After t=0 we have a series RLC circuit with a voltage source. R_1 is by passed so we use $R=R_2$.

For series RLC,
$$\alpha = \frac{R}{2L}$$
, $\omega_o^2 = \frac{1}{LC}$

$$\alpha = \frac{160 \Omega}{2.5 \mu H}$$
, $\omega_o^2 = \frac{1}{5 \mu H \cdot 500 pF}$

$$\alpha = \frac{16 M r}{5}$$
, $\omega_o^2 = \frac{400 M^2 (r/s)^2}{5 \mu H \cdot 500 pF}$

$$\omega_o = \frac{20 M r}{5}$$

 $w_o > \kappa$ so we have underdamped case:

$$w_d = \sqrt{w_0^2 - \kappa^2} = \sqrt{(20M)^2 - (16M)^2}$$
 r/5

Note: wd > a can happen but wd < wo always.

Our sol'n form is

$$v(t) = A_1 e^{-\alpha t} \cos \omega_d t + A_2 e^{-\alpha t} \sin \omega_d t + A_3.$$

Second, we find $A_3 = v(t \rightarrow \infty)$.

As t→∞, C = open L = wire switch closed

No current in R so no V-drop for R. Thus, 15V from source is across C.

$$v(t \to \infty) = -15V$$

$$\therefore A_3 = -15V$$

Third, we find $i_L(t=0^-)$ and $v_C(t=0^-)$ as a precurser to finding $v(0^+)$ and $\frac{dv}{dt}$.

At $|_{t=0^+}$

At t=0, C = open L= wire switch open

Fourth, we have $i_{L}(0^{+}) = i_{L}(0^{-})$ and $v_{C}(0^{+}) = v_{C}(0^{-})$ since these are energy variables $(w = \frac{1}{2}Li^{2})$ and $w = \frac{1}{2}Cv^{2}$ that cannot change instantly.

At $t=0^+$, we model L as a current source with value $i_L(0^+)$ and C as a voltage source with value $v_C(0^+)$.

Fifth, we solve the circuit to find $v(o^+)$. Here, we have that $v(o^+) = ov$ without doing any additional work.

For the form of sol'n we are using, we have $-\alpha t \qquad -\alpha t \qquad -\alpha t$ $v(o^+) = A_1 e \qquad \cos(\omega_0 t) + A_2 e \qquad \sin(\omega_0 t) + A_3$ $= A_1 \cdot e^{-t} \cos(t) + A_2 e \qquad \sin(t) + A_3$ $= A_1 \cdot e^{-t} \cos(t) + A_3$ $= A_1 \cdot e^{-t} + A_3$ $= A_1 \cdot e^{-t} + A_3$

Equating the known value of $v(0^+) = 0V$ with the symbolic soln, we conclude that:

$$ov = A_1 + A_3 = A_1 - 15V$$
 or $A_1 = 15V$

Sixth, we use the circuit model at $t=0^+$ to find $\frac{d}{dt}v(t)$

The method we use to find any derivative value at t=0+ is to write an expression for v(t) in terms of only $i_{L}(t)$ and $v_{C}(t)$ plus component values.

Here, we have the simple result that

$$v(t) = v_c(t)$$

Now we differentiate this entire eg'n:

$$\frac{dv(t)}{dt} = \frac{dv_c(t)}{dt}$$

From $i_c(t) = C \frac{dv_c(t)}{dt}$ we have $\frac{dv_c(t)}{dt} = \frac{i_c(t)}{C}$.

(Although we don't require it here, we also have $v_L(t) = L \frac{di_L(t)}{dt}$ or $\frac{di_L(t)}{dt} = \frac{v_L(t)}{L}$.)

Thus
$$\frac{dv(t)}{dt}\Big|_{t=0} = \frac{dv_c(t)}{dt}\Big|_{t=0} = \frac{i_c(t)}{c}\Big|_{t=0}$$
.

We use our model for $t=0^+$ to find $i_c(t=0^+)$. (See above.) From the model, $i_c(0^+) = 0A$ since C is in series with a 0A source.

$$\therefore \frac{dv(t)}{dt}\Big|_{t=0^+} = \frac{i_c(t)}{c}\Big|_{t=0^+} = \frac{OA}{c} = 0 \text{ V/s}$$

Equating this known value of $\frac{dv(t)}{dt}$ | $t=0^+$ with $\frac{d}{dt}$ of the symbolic solu, $\frac{dv(t)}{dt}$ | $t=0^+$

we have

$$OV = \frac{d}{dt} V(t) \Big|_{t=0}^{\infty} + \frac{d}{dt} \Big[A_1 e^{-\alpha t} \cos(\omega_d t) + A_2 e^{-\alpha t} \sin(\omega_d t) \Big] \\ + A_3 \Big|_{t=0}^{\infty} + \frac{-\alpha t}{dt} \Big[+ A_3 e^{-\alpha t} - \frac{-\alpha t}{dt} - \frac{-\alpha t}{dt} \Big] \Big] \\ + A_2(-\alpha) e^{-\alpha t} \sin(\omega_d t) + A_2 e^{-\alpha t} \cos(\omega_d t) \Big|_{t=0}^{\infty} + A_2(-\alpha) e^{-\alpha t} \sin(\omega_d t) + A_2 e^{-\alpha t} \cos(\omega_d t) \Big|_{t=0}^{\infty}$$

$$A_{2}(-\alpha) \cdot 1 \cdot 1 + A_{1} \cdot 1 \cdot \omega_{d} \cdot 0$$

$$A_{2}(-\alpha) \cdot 1 \cdot 0 + A_{2} \cdot 1 \cdot \omega_{d} \cdot 1$$

$$ov = A_1(-\kappa) + A_2 \omega_d$$

Thus,
$$A_2 = \frac{A_1 \alpha}{\omega_d} = \frac{15V \cdot 16 Mr/5}{12 Mr/5} = 20V$$

$$-16Mt$$

$$\therefore v(t>0) = 15Ve cos(12Mt)$$

$$-16Mt$$

$$+ 20Ve sin(12Mt)$$

- 15V

Check:
$$v(o^+) = 15V - 15V = 0V$$