Measure -Definition,

May 1990 Real Analysis - Measurable sets and functions

neil & Cotter

measure of set  $S \equiv mS \equiv min total length of lintervals$  covering set S

ex: S = (0, 44) U (34,1)

is covered by intervals (0, 1/4) and (3/4, 1) whose total length is 1/4 + 1/4 = 1/2. We also note that no other collection of open intervals whose union contains (covers) S will have combined length < 1/2.

.. m 5 = 1/2.

set 5 is measurable = For every set X that one might choose,

m X = m (ANA) + m (ANA) where

XN3 XN~5 % is complement

of \$25\$

ex: m 5 = 0 implies 5 is measurable

pf: We always have  $m \le X \le m (X \cap S) + m (X \cap S)$ .

This holds because we have split X into two pieces, and the coverings for the two pieces may be less efficient than the covering for X.

Now  $X \land S \subseteq S$  so  $m(X \land S) \subseteq m(S) = 0$ since we can use the same covering for  $X \land S$ that we used for S and have zero total length for this covering. Since  $m() \ge 0$  always, we conclude that  $m(X \land S) = 0$ .

Also  $X \cap S \subseteq X$  so  $m(X \cap S) \subseteq mX$ .

 $\therefore m \times \geq m (x \wedge n - s) + m (x \wedge s)$ 

Since we also had  $mX = m(x \land \neg S) + m(x \land S)$ we conclude that  $mX = m(x \land \neg S) + m(x \land S)$ . Then by definition S is measurable. Measure—

May 1990 Real Analysis - Measurable sets and functions (cont.)

Neil E Cotter

The family M of measurable sets contains:

M is a  $\sigma$ -algebra  $\equiv$  Items (5)-(7) above mean that M or Borel field is a  $\sigma$ -algebra (another name is Borel field). The idea is that M is closed under the operations of union and intersection:  $m_1, m_2 \in M$  then  $m_1 1 m_2 \in M$  and  $m_1 U m_2 \in M$ .

B is the collection of Borel sets  $\equiv$  Smallest sigma algebra containing all open sets.

ex: Every Borel set is measurable.

f(x) is a measurable function  $\equiv$  For any number  $\alpha = real \# or \pm \infty$  $\{x: f(x) > \alpha \}$  is measurable

ex: 
$$f(x) = x$$
 on  $D = [0,1]$ 
 $x = x$ 
 $x = x$ 

f(x) is measurable.

Measure -Real Analysis -NonMeasurable sets and functions (cont.) May 1990 Neil & Cotter

f(x) is a Borel measurable function  $\equiv$  For every  $\alpha = real \# or \pm \infty$ , # {x: f(x) > = ∞ } is a Borel set.

ex: A Borel measurable function is a measurable function.

Does one encounter nonmeasurable functions in practice? Q. Α. No.

> It is quite difficult to concoct a non measurable set or nonmeasurable function. They are abstractly defined and are pathological cases. The standard example is defined point by point:

Consider real numbers in EO, 17. Divide EO, 1) into an infinite number of sets as follows: If s and t are real numbers and s-tis a rational number (ratio of integers), then s and t are in the same set.

For example, one set contains all the rational #15 between 0 and 1: \$0, 1/2, 1/3, 1/4, 2/5, 2/3, 3/4, ... }

Another set contains 11/4 = rationals: { #14, 11/4-1/2, 11/4+1/8, ...

Another set contains 1/2 = rationals: { 1/2, 1/2+14, 1/2-1/2,...

create a set 5 which contains exactly one element from each of the above sets: S = {0, T/4, 1/12, ... }

Then 5 is not measurable.

pf: Create sets 50ri by adding rational number ri to every element of 5. Use modulo larithmetic: if stri>1 then result should be stri-1. (over) Measure—
May 1990 Real Analysis—NonMeasurable sets and functions (cont.)

Meil & Cotton

Now  $U \subseteq \mathbb{R}^n := [0,1)$ . Union contains all r: pts in [0,1].

Also  $\beta \oplus r_i \cap \beta \oplus r_j = \emptyset$  for  $i \neq j$ . The sets do not intersect.

and all the SBr; must have the same measure because they all have the same number of pts which are distributed the same way in (0,1).

Then  $m\left(\bigcup_{r_i} \Im \Phi_{r_i}\right) = \sum_{r_i} m\left(\Im \Phi_{r_i}\right)$  since  $\Im \Phi_{r_i}$  do not intersect.

=  $m \supset (1)$  = 1

Since there infinitely many r; and every Sori has the same measure we have:

$$1 = m[0,1) = 2 m (S+ri) = \infty \cdot m(S)$$

If m(s) = 0 then we must have  $\infty \cdot 0 = 1$ , but usually we define  $\infty \cdot 0$  to be 0 in real analysis. If  $m(s) \neq 0$  we would get  $\infty \cdot const = \infty$ , but this is wrong since we must get m[0, 1) = 1.

We conclude that S is not measurable.

Moral: Nonmeasurable Sets are uncommon and may be viewed as abstract curiosities. In the above example we tound a product  $\infty$ 0 making an appearance. What is really at the heart of problems where  $\infty$ 0 appears is always the issue of cardinality (i.e. sizes) of sets. The set of real #1s is much larger than the set of rational #1s, and the rationals are hinfinite in number. We had infinitely many Stri, each containing infinitely many points