Ex: Find a multiple regression (i.e., hyperplane fit) to the following data:

(3, 4, 27) (5, 5, 15) (2, 6, 23) (1, 3, 9) (4, 2, 1)

SOL'N: The hyperplane is defined as follows:

$$y = (b, a_1, a_2) \circ (1, x_1, x_2) = b + a_1 x_1 + a_2 x_2$$

We write matrix terms for the data and hyperplane fit:

[1	<i>x</i> ₁₁	x_{21} [1]	3	4]		[27]]
1	<i>x</i> ₁₂	x_{22} 1	5	5	$\begin{bmatrix} b \end{bmatrix}$	15	
X = 1	<i>x</i> ₁₃	$x_{23} = 1$	2	6	$(b,\vec{a}) = \begin{vmatrix} a_1 \end{vmatrix} \qquad \vec{y}$	= 23	
1	<i>x</i> ₁₄	x_{24} 1	1	3	$\begin{bmatrix} a_2 \end{bmatrix}$	9	
1	<i>x</i> ₁₅	x_{25} 1	4	2		1	

The matrix equation for the data and hyperplane fit are as follows:

$$X \bullet (b, \vec{a}) = \vec{y}$$

A pseudoinverse of *X* yields the least-squares solution:

 $(b, \vec{a}) = X^+ \vec{y}$

where

$$X^+ = (X^T X)^{-1} X^T$$

NOT'N: $X^T = X$ transpose

	0.2	-0.8	-0.3	1.2	0.7
$X^+ =$	0.0	0.2	-0.1	-0.2	0.1
	0.0	0.1	0.2	-0.1	-0.2

```
(b, \vec{a}) = X^+ \vec{y} = (-2, -1, 5)
```

Plugging the (x_1, x_2) coordinates into the hyperplane equation yields the following estimated *y* values:

$$\hat{\vec{y}} = X \bullet (b, \vec{a})$$

REGRESSION MULTIPLE REGRESSION Example 1 (cont.)

or

$$[\vec{x}_1, \vec{x}_2, \hat{\vec{y}}] = \begin{bmatrix} 3 & 4 & 15 \\ 5 & 5 & 18 \\ 2 & 6 & 26 \\ 1 & 3 & 12 \\ 4 & 2 & 4 \end{bmatrix}$$

The errors are found by subtracting *y* values from estimated *y* values:

$$\vec{e} = \begin{bmatrix} 15 \\ 18 \\ 26 \\ - \end{bmatrix} \begin{bmatrix} 27 \\ 15 \\ 3 \\ 23 \\ - \end{bmatrix} = \begin{bmatrix} -12 \\ 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}$$

NOTE: The errors sum to zero, but this is not always the case. In the plot, below, the estimates are shown as circles:

