Ex: \quad Find a multiple regression (i.e., hyperplane fit) to the following data:
$(3,4,27)$
$(5,5,15)$
$(2,6,23)$
$(1,3,9)$
$(4,2,1)$

Sol'n: The hyperplane is defined as follows:

$$
y=\left(b, a_{1}, a_{2}\right) \circ\left(1, x_{1}, x_{2}\right)=b+a_{1} x_{1}+a_{2} x_{2}
$$

We write matrix terms for the data and hyperplane fit:

$$
X=\left[\begin{array}{ccc}
1 & x_{11} & x_{21} \\
1 & x_{12} & x_{22} \\
1 & x_{13} & x_{23} \\
1 & x_{14} & x_{24} \\
1 & x_{15} & x_{25}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & 4 \\
1 & 5 & 5 \\
1 & 2 & 6 \\
1 & 1 & 3 \\
1 & 4 & 2
\end{array}\right] \quad(b, \vec{a})=\left[\begin{array}{c}
b \\
a_{1} \\
a_{2}
\end{array}\right] \quad \vec{y}=\left[\begin{array}{c}
27 \\
15 \\
23 \\
9 \\
1
\end{array}\right]
$$

The matrix equation for the data and hyperplane fit are as follows:

$$
X \bullet(b, \vec{a})=\vec{y}
$$

A pseudoinverse of X yields the least-squares solution:

$$
(b, \vec{a})=X^{+} \vec{y}
$$

where

$$
X^{+}=\left(X^{T} X\right)^{-1} X^{T}
$$

Not'n: $\quad X^{T} \equiv X$ transpose

$$
\begin{aligned}
& X^{+}=\left[\begin{array}{ccccc}
0.2 & -0.8 & -0.3 & 1.2 & 0.7 \\
0.0 & 0.2 & -0.1 & -0.2 & 0.1 \\
0.0 & 0.1 & 0.2 & -0.1 & -0.2
\end{array}\right] \\
& (b, \vec{a})=X^{+} \vec{y}=(-2,-1,5)
\end{aligned}
$$

Plugging the $\left(x_{1}, x_{2}\right)$ coordinates into the hyperplane equation yields the following estimated y values:

$$
\hat{\vec{y}}=X \bullet(b, \vec{a})
$$

or

$$
\left[\vec{x}_{1}, \vec{x}_{2}, \hat{\vec{y}}\right]=\left[\begin{array}{ccc}
3 & 4 & 15 \\
5 & 5 & 18 \\
2 & 6 & 26 \\
1 & 3 & 12 \\
4 & 2 & 4
\end{array}\right]
$$

The errors are found by subtracting y values from estimated y values:

$$
\vec{e}=\left[\begin{array}{l}
15 \\
18 \\
26 \\
12 \\
4
\end{array}\right]-\left[\begin{array}{r}
27 \\
15 \\
23 \\
9 \\
1
\end{array}\right]=\left[\begin{array}{r}
-12 \\
3 \\
3 \\
3 \\
3
\end{array}\right]
$$

Note: The errors sum to zero, but this is not always the case.
In the plot, below, the estimates are shown as circles:

