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A cubic sP(ine 18 Uke a Fietewi;e, (inear
qFFrox'nmq'h‘Lon where 4he  (ine Seymen—!:'s are
| . mplqczo{ Io)/ cubie Po(ynomiqls.

3"(7‘-\) Meq,!ured

/"‘_\___/— data pointy

$- : . 4 4 N > Kl

y \l T 3 2
- : — FO)= axirazsgtaz Xt ay

[ ... A ) . . '
in this Mfeﬂldl.

We reﬁu}re that the <cubic FO(ynom'lqls have
ontinuous First and gecond derivatives at

the  daba points mark'mj the point where

one  cubicd Folynomia( ends and the next befins.
This  dntinuity reguirement is sufficient +o
guarantee a anigue get of coefficients For
! , the cubic  polynomials.
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The cubic  Spline /s, by construation, both Smooth
and  differenrtiable. Since most  functions in
nature have these characteristics, gplines often
have an advantage over [(inear interpolation.

In multiple dimensions, however, we encounter ran-tme
constraints. For -+we dimensions, we can dongtract
splines  For 3/-[0( pouts  in the x, direction, but

we  have to construct a spline  1a e x5 direction
after we cvaluate +he ‘S/o(;”e /n the x, direction.
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