EX: Evaluate the state vector \mathbf{x} at t = 0+ for the circuit below in terms of symbolic component names.

Third-order circuit. $i_g(t)$ switches from $-i_0$ to i_0 at t = 0.

ANS: $i_1(0^+) = \frac{-i_0 R_2}{R_1 + R_2}$ $i_2(0^+) = \frac{-i_0 R_1}{R_1 + R_2}$

 $v_1(0^+)=-i_0\cdot R_1\parallel R_2$

SOL'N: The state variables are always the inductor currents and capacitor voltages (which are also the variables we use to calculate stored energy). Thus, our state variables are i_{L1} , i_{L2} , and v_{C1} . We denote these as i_1 , i_2 , and v_1 .

Because their values cannot change instantly, the state variables have the same values at time $t = 0^-$ as they do at time $t = 0^+$.

Because the circuit has had the same DC current source for an infinitely long time at $t = 0^-$, (from time $-\infty$ to 0^-), the circuit will have reached equilibrium and time derivatives of state variables will be zero. In other words, currents and voltages are no longer changing.

Thus, we have that v_{L1} , v_{L2} , and i_{C1} are all zero based on the basic component equations:

$$\frac{di_L}{dt} = \frac{v_L}{L}$$
$$\frac{dv_C}{dt} = \frac{i_C}{C}$$

This means the inductors look like wires and the capacitors look like open circuits. We get the equivalent circuit shown below at time $t = 0^-$.

The circuit is now a simple current divider, and the capacitor voltage is given by Ohm's law (using i_g and $R_1 || R_2$).

$$i_1(0^-) = -i_0 \frac{R_2}{R_1 + R_2}$$
$$i_2(0^-) = -i_0 \frac{R_1}{R_1 + R_2}$$
$$v_1(0^-) = -i_0 \cdot R_1 \parallel R_2$$

These are the same values as the initial conditions at $t = 0^+$.