Example:
(P14.3)
Design the circuit below using a +-9V supply to provide a design capable of +-7V outputs with a 1kohm load. Use the smallest possible total supply current.

Example #2:
(D14.14)
A class B output stage is required to deliver an average power of 100W into a 16ohm load. The power supply should be 4V greater than the corresponding peak sine-wave output voltage. Determine the power-supply voltage required (to the nearest volt), the peak current from each supply, the total supply power, and the power-conversion efficiency.

Class AB stage:

- This type of stage uses both the “A” and the “B” to produce a “push-pull” operation without the deadband.
Output Stages

- The voltage offset at the input crossover distortion

\[I_Q = I_S e^{\frac{V_{BB}}{V_T}} \Rightarrow V_{BB} = 2V_T \ln \frac{I_Q}{I_S} \]

\[i_N = I_S e^{\frac{V_{BEN}}{V_T}} \Rightarrow V_{BEN} = V_T \ln \frac{i_N}{I_S} \]

\[i_P = I_S e^{\frac{V_{EBP}}{V_T}} \Rightarrow V_{EBP} = V_T \ln \frac{i_P}{I_S} \]

\[V_{BEN} + V_{EBP} = V_{BB} \]

\[\Rightarrow V_T \ln \left(\frac{i_N}{I_S} \right) + V_T \ln \left(\frac{i_P}{I_S} \right) = 2V_T \ln \frac{I_Q}{I_S} \]

\[\Rightarrow i_N i_P = I_Q^2 \quad \text{smooth transition at } V_o = 0 \]

Output resistance:
- This will change as \(V_o \) changes \(\Rightarrow \) Therefore, only find for a fixed value of \(V_o \).
OUTPUT STAGES

Biasing Class AB stage:

- Biasing with diodes:

 ![Diagram of Class AB biasing with diodes]

 - If output transistor emitter area is n times larger than diode junction area, then

 \[
 i_N = I_S e^{\frac{V_{BEN}}{V_T}} \\
 i_P = I_S e^{\frac{V_{BE1}}{V_T}} \\
 i_{Diode} = \frac{I_S}{n} e^{\frac{V_{BE2}}{V_T}} \\
 \]

 \[
 I_Q = n I_{bias}
 \]

- Biasing using a \(V_{BE}\) multiplier

 ![Diagram of Class AB biasing using a \(V_{BE}\) multiplier]
Output Stages

V_{BB} can be set using resistors adjusted to get the right I_Q:

```
\begin{center}
\includegraphics[width=0.3\textwidth]{dummy.png}
\end{center}
```

Thermal Runaway in BJT’s:

- As Temperature \uparrow by 1°C:
 - If collector current is fixed, V_{BE} drops by 2mV \{VBE dependence $\Rightarrow -2mV/°C$\}
 - If V_{BE} is fixed, collector current increases 8%

- As collector current \uparrow, BJT Temp \uparrow which causes collector current \uparrow, …
 - THERMAL RUNAWAY

Solution is to:

- Place D1, D2 or Q1 in ________________________________
 - IC Design \Rightarrow place them __________________
 - In discrete design \Rightarrow mount D1, D2, or Q1 on the _____________