1. Design the circuit of Fig. 6.4 to obtain an output current whose nominal value is 25µA. Find R when Q_1 and Q_2 are matched with channel lengths of 1µm, channel widths of 10µm, V_t=1V, k’_n=100µA/V^2, V_A=20V, V_D=3V and I_{REF}=25µA. What is the minimum allowable value of Vo for proper operation? What is the output resistance? What is the change in the output current when Vo is changed by +1V?

2. Design the circuit of Fig. 6.10 to obtain an output current whose nominal value is 100µm when V_o is 2V. Find R, I_{REF}, V_{omin} when I_s=10^{-15}A, β=100, V_CC=6V, and V_A=60V. If V_o is changed to 5V, what is I_o?

3. Find voltages at all nodes and currents through all branches in the circuit below. Assume |V_{BE}| = 0.7V and β=∞.

4. Design a current source that generates a constant current I_o=50µA that operates from a 3V supply. State all values if resistors are used. Assume that V_{BE} is 0.7V at a current of 1mA and neglect the effect of a finite β. You can only use resistors that are less than 50kΩ.