1. An analog signal in the range of 0 to +9V is to be digitized with a quantization error less than 0.5% of full scale. What is the number of bits required? What is the resolution of the conversion? If the range is to be extended to ±9V with the same requirement, what is the number of bits required? For an extension to a range of 0 to +20V, how many bits are required to provide the same resolution? What is the corresponding resolution and quantization error?

2. (a) Name a clever circuit structure used to generate binary-weighted currents that does not require binary-weighted resistors?

(b) All else being equal, which ADC consumes more power: a flash ADC or a successive-approximation ADC?

(c) All else being equal, which ADC is fastest: a flash ADC, a successive-approximation ADC, or a dual-slope ADC?

(d) All else being equal, which ADC is slowest: a flash ADC, a successive-approximation ADC, or a dual-slope ADC?

3. Consider Fig. 9.38. On the staircase output of the S/H circuit roughly sketch the output of a simple low-pass RC circuit with a time constant that is (a) one-half of the sampling interval and (b) equal to the sampling interval.

4. What is the input resistance seen by \(V_{REF} \) in the circuit of Fig. 9.41 if \(R = 1k\Omega \)?

5. Design a 3-bit flash ADC such as that shown in Fig. 9.45. How many comparators are required? For an input signal in the range of 0 to +9V, what are the reference voltages needed? Show how they can be generated using a 9V reference and several 1k\(\Omega \) resistors? Indicate the digital code you expect at the output of the comparators and at the output of the logic for an input of (a) 0V, (b) 5.1V, (c) 9V