Problem #1: For each of the op-amp circuit below, identify the feedback topology. Assuming an ideal op amp, find an expression for A_f.

(a)

(b)

(c)

(d)
Problem #2: Find A, β, A_f, the input resistance (R_{if}), and the output resistance (R_{of}) for the single-transistor shunt-shunt feedback amplifier below assuming $\beta_{\text{transistor}}=150$ and $V_A=50V$.

\[V_{CC} = 3.3 \, V \]

\[R_C = 100 \, k\Omega \]

\[R_f = 1 \, \mu F \]

\[R_L = 5 \, k\Omega \]

\[V_{\text{in}} \]

\[i_f \]
Problem #3: Analyze the shunt-series feedback amplifier below. Find the gain \(A_f \), input resistance \(R_{if} \), and output resistance \(R_{of} \). Use \(\beta_{\text{transistor}} = 100 \) and \(V_A = 100V \) with Q1 biased at 0.66mA and Q2 biased at 1.6mA.