Fundamentals of Digital System Design

ECE/CS 3700
Spring 2018, Homework \# 2
Assigned, Tuesday Feb 6, Due Date: Tuesday, Feb 13, 2018, by midnight in the HW locker.

1) (FPGA Placement and Routing - $\mathbf{1 0}$ points) Refer to Fig. B.39, in the textbook, given on page 768 Appendix B. The figure shows how Look-up Tables (LUTs) are interconnected by two layers of wiring: horizontal and vertical. The blue coloured cross-mark (\times) indicates that a connection has been made between the horizontally and vertically drawn wires. Convince yourselves that $f=f_{1}+f_{2}=x_{1} x_{2}+x_{2}^{\prime} x_{3}$.
Based on the above concepts, you are asked to program an FPGA, whose LUTs and inter-connection wires are shown in Fig. 1. The function to be implemented is $f=f_{1} \cdot f_{2}$, where $f_{1}=a+\bar{b}$ and $f_{2}=\bar{a}+\bar{c}$. LUT 1 should implement f_{1}. LUT 2 should implement f_{2} and LUT 3 should implement $f_{1} \cdot f_{2}$. The horizontally and vertically placed interconnection wires are fabricated in different planes. In order to depict a connection between these wires at a cross-point, place a cross-mark (\times). The inputs a, b, c and the output f have already been connected to the "input-output pads" for your (in)convenience. Have fun!

Fig. 1. Fill-up the truth-table entries in the look-up tables. Label the inputs and outputs of each LUT properly. Put a \times mark to show an electrical connection between the vertical and horizontal metal wires.
2) (MUX-based design - 10 points) Given a Boolean function $F(a, b, c)=a \oplus b \oplus c$, implement a circuit using only multiplexor (MUX) gates and 0,1 (ground and $V_{D D}$) inputs. How many MUXes do you need? Draw a circuit schematic.

If, in addition to MUXes, 0 and 1 inputs, NOT gates (inverters) are also allowed, can the number of MUXes be reduced in the implementation of F ? If so, draw a simplified circuit, and provide the gate count of the number of MUXes and NOT gates needed.
3) (Boolean Function Manipulation - 10 points) Let $F(a, b, c)=a \cdot b+a \cdot c+b \cdot c$, then $F(\bar{a}, \bar{b}, \bar{c})=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c}+\bar{b} \cdot \bar{c}$, where \bar{a} denotes the complement of a. Now answer the following:

- Is $\overline{F(a, b, c)}=F(\bar{a}, \bar{b}, \bar{c})$?
- Now consider an arbitrary Boolean function $F(a, b, c)$. Is inverting the inputs of F equivalent to inverting the function itself? In other words, for an arbitrary Boolean function $F(a, b, c)$, is $\overline{F(a, b, c)}=F(\bar{a}, \bar{b}, \bar{c})$? If yes, prove it. Otherwise, give a counter-example.

4) (K-Map minimization - $\mathbf{2 5}$ points) For the following functions, whose on-set minterms are shown using the $\operatorname{sigma}\left(\sum\right)$ notation, derive a minimum Sum-of-Product (SOP) form expression using Karnaugh maps (K-maps). Note that your final answer should be a sum-of-product form Boolean expression, derived using cube-covering on the K-maps.

- $F(A, B, C, D)=\sum m(0,2,3,5,6,7,8,10,11,14,15)$
- $F(A, B, C, D)=\sum m(1,2,3,6,7,11)$
- $F(A, B, C, D)=\sum m(2,3,5,7,10,11,13,14,15)$
- $F(A, B, C, D, E)=\sum m(2,5,7,8,10,13,15,17,19,21,23,24,29,31)$
- $F(A, B, C, D, E)=\sum m(0,4,18,19,22,23,25,29)$

5) (K-maps with don't cares - $\mathbf{1 0}$ points). Derive minimum cost SOP forms for these functions.

- $F(A, B, C, D)=\sum m(1,3,5,7,9)+\sum d(6,8,12,13)$
- $F(A, B, C, D)=\sum m(0,2,8,9,10,15)+\sum d(1,3,6,7)$

6) (Another Min cost SOP - 15 points) Consider the function $f\left(x_{1}, \ldots, x_{4}\right)=\sum m(0,3,4,5,7,9,11)+$ $D(8,12,13,14)$. Working on a K-map, first generate and list all the prime implicants of the function. Subsequently, from among these primes, identify the essential primes, and then derive a minimum (literal) cost SOP form Boolean expression. How many product-terms does the min-cost SOP form have? What is the total literal cost of the min-cost SOP?
7) (Synthesis of a decomposed Boolean function by exploiting don't care conditions - $\mathbf{2 0}$ points) Consider the Boolean function $F(a, b, c, d, e)$ whose K-map is shown below in Fig. 2 (i). Now suppose that a logic synthesis algorithm decomposes F as $F(a, b, c, d, e)=h\left(g_{0}(a, b, c), g_{1}(a, b, c), d, e\right)$, shown in Fig. 2, where the SOP representations are:

- Functions $g_{0}=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}$ and $g_{1}=a^{\prime} b^{\prime} c+a b c$
- Function $h=g_{0}^{\prime} g_{1}^{\prime} e^{\prime}+g_{0} g_{1}^{\prime} d^{\prime}+g_{0}^{\prime} g_{1} e$

You are asked to solve the following:
a) From the K-map of $F(a, b, c, d, e)$, identify a minimum SOP form representation of F in its undecomposed form in terms of the primary inputs $\{a, b, c, d, e\}$. What is the SOP literal cost of F ?
b) Now assume the a decomposition is applied as shown in Fig. 2. Minimize the SOP form of g_{0}, g_{1}, h. Are they already given in minimal form?
c) This decomposition creates don't care conditions at the input of the $h\left(g_{0}, g_{1}, d, e\right)$ block. Identify the don't care conditions at the input of h.
d) Using the don't care conditions, minimize the SOP form of h. What is the total SOP literal cost of g_{0}, g_{1} and h. Do the don't care conditions result in further logic simplification with literal cost savings?

(i) $F(a, b, c, d, e)$

(ii) A decomposed implementation of $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$

Fig. 2. Decomposition of $F(a, b, c, d, e)=h\left(g_{0}(a, b, c), g_{1}(a, b, c), d, e\right)$. Compute the don't cares at the input of the $h\left(g_{0}, g_{1}, d, e\right)$ block and simplify the SOP form of h.

