Fundamentals of Digital Logic Design

ECE/CS 3700
Spring 2018, Homework \# 3
Due Date: Tuesday, Feb 27, 5pm sharp, due in the HW locker. At 5pm, I will upload solutions to this HW, so that you will have ample time to prepare for the upcoming Mid-Term exam.

1) (15 points) Propagate-generate-delete signals in adders. In class, we studied the carry look-ahead adder as a means to speed-up carry propagation delay of the ripple carry adder. Look-ahead adders make use of the generate $\left(G_{i}\right)$ and propagate $\left(P_{i}\right)$ signals to precompute whether or not stage i would output a carry. Similar to using the propagate $\left(P_{i}\right)$ and generate $\left(G_{i}\right)$ signals, an adder can be designed by using a propagate $\left(P_{i}\right)$, generate $\left(G_{i}\right)$ and a delete $\left(D_{i}\right)$ signal. Consider the Truth table of the full adder shown in Table I:

TABLE I
Truth Table of a full adder

a	b	c_{i}	S	c_{i+1}	Carry Status
0	0	0	0	0	Delete
0	0	1	1	0	Delete
0	1	0	1	0	Propagate
0	1	1	0	1	Propagate
1	0	0	1	0	Propagate
1	0	1	0	1	Propagate
1	1	0	0	1	Generate
1	1	1	1	1	Generate

The first two minterms m_{0}, m_{1} correspond to the condition where the carry-out signal gets suppressed (deleted) at c_{i+1}, independent of the value at c_{i}. It is easy to see that the delete signal $D_{i}=a^{\prime} \cdot b^{\prime}$. Prove that:

- $\operatorname{Sum}=P_{i} \cdot \overline{C_{i}}+D_{i} \cdot C_{i}+G_{i} \cdot C_{i}$
- $C_{i+1}=G_{i}+\overline{D_{i}} \cdot C_{i}$.

2) (10 points) Given that A, B, C_{i} are the inputs to a full adder, S and C_{o} are sum and carry-out, respectively, prove that:

- $S=A B C_{i}+\overline{C_{o}}\left(A+B+C_{i}\right)$.

3) (25 points) Subtractor design with two's complement numbers. Suppose that you are given two $\mathbf{3}$-bit unsigned numbers $A[2: 0], B[2: 0]$ that have to be added together $(C=A+B)$. Suppose, further, that you are given a pre-designed 4-bit adder that you have to use for this purpose. A 4-bit adder takes inputs $X[3: 0], Y[3: 0]$ and adds them. In order to do the addition correctly, we can take vectors A, B and concatenate a leading 0 to make them 4-bit vectors and then map the inputs; i.e. in Verilog terms: $X[3: 0]=\left\{1^{\prime} b 0, A[2: 0]\right\}$; and similarly $Y[3: 0]=\left\{1^{\prime} b 0, B[2: 0]\right\}$. This way, n-bit unsigned integers can be scaled to larger bits.

However, this technique may not work for 2's complement scheme. So, now you have to answer the following: You are given two 3-bit vectors $A[2: 0], B[2: 0]$ that are already given in 3-bit two's complement form. You are asked to compute $A-B$ (subtraction). Suppose that you are already given a 4-bit ripple carry adder as a pre-designed black-box as given in Fig. 1. This circuit takes as inputs $X[3: 0], Y[3: 0]$ and a carry-in C_{i} and computes the sum $S[3: 0]=X[3: 0]+Y[3: 0]$. The ripple carry adder also produces a carry-out C_{o}. You have access to only the primary inputs and outputs of this block ($X[3: 0], Y[3: 0], C_{i}, S[3: 0], C_{o}$). You cannot access any internal signals of this 4-bit ripple carry adder.

Fig. 1. A pre-designed 4-bit adder.

- You have to use this 4-bit adder to subtract the given 3-bit two's complement numbers A, B.
- Along with this 4-bit adder, you are allowed to use any AND/OR/XOR/NOT Boolean logic gates.
- Does your design require an overflow signal to be generated? If so, design the logic for the overflow signal. If you think an overflow is not needed, explain the reason.
- Show your design and schematic (or a Verilog code, if you wish), and please depict the signal connections properly (e.g. if A[3] is connected to X[3], show it clearly on the schematic). Also, demonstrate the correct functioning of your circuit using an example input stimulus.

4) (25 points) Multiplier design. You are asked to design an array multiplier that multiplies a 4-bit number $A=\left(a_{3}, a_{2}, a_{1}, a_{0}\right)$ by a 3-bit number $B=\left(b_{2}, b_{1}, b_{0}\right)$. Consider that pre-designed 4-bit adders are available to you. (Recall that a 4-bit adder adds two four-bit numbers). Design the multiplier using only two 4-bit adders and a minimum number of two-input AND/OR/NOT/XOR/XNOR gates. Show a block diagram or a schematic of your design depicting input and output bits clearly. (Solve this problem properly, and you've understood the concept of array multipliers!).
5) (25 points) This design example will also use a n-bit multiplexor; we will study its design and application
in class on Tuesday $2 / 20$. You are asked to design a circuit that i) takes a 4-bit vector $X[3: 0]$ already given in two's complement form; and ii) outputs a 4-bit signal $Y[3: 0]$ where Y represents the absolute value of X, i.e. $Y=|X|$. Note that if A is an integer, $|A|=|-A|=A$. In other words, if $X=3=4^{\prime} b 0011$, the circuit outputs $Y=3=4^{\prime} b 0011$. If $X=-3=4^{\prime} b 1101, Y=3=4^{\prime} b 0011$. Design this circuit and show the schematic. You may assume that a 4-bit adder of Fig. 1, along with 4-bit multiplexors and all AND/OR/XOR/NOT gates are available to you.
Have fun!
