1. **(2 points)** Suppose that we are given a circuit that implements an arbitrary Boolean function \(f(a, b, c) \), i.e. the circuit takes \(a, b, c \) as inputs and produces \(f \) as the output. If we invert the inputs, and simultaneously invert the output, do we always get back the same function? In other words, is \(f(\overline{a}, \overline{b}, \overline{c}) = \overline{f(a, b, c)} \)? Demonstrate your answer on: i) \(f(a, b, c) = ac + bc \); and also on ii) \(f(a, b, c) = ab + ac + bc \).

2. **(3 points)** Using a K-map, minimize \(f(a, b, c, d) = \sum m(0, 4, 8, 10, 11, 12, 13, 15) \). Implement the resulting two level logic function using only NAND gates.

3. **(3 points)** Consider two 2-bit numbers \(D = \{d_1, d_0\} \) and \(C = \{c_1, c_0\} \). Design a combinational circuit that takes these two unsigned numbers as inputs and produces a 2-bit output \(R = \{r_1, r_0\} \). The output \(R \) should be the remainder after dividing \(D \) by \(C \). For example, when \(d_1, d_0 = 11 \) and \(c_1, c_0 = 10 \), then the output \(r_1, r_0 = 01 \) (as \(D = 3 \) divided by \(C = 2 \) results in remainder \(R = 1 \)). Note that since divide by zero is not defined, \(c_1, c_0 = 00 \) will never occur.

 (a) Write the truth table for the circuit with \(D, C \) as inputs and \(R \) as outputs. Keep in mind the don’t cares.

 (b) Fill in the Karnaugh map and write simplified Boolean expressions for \(r_1 \) and \(r_0 \).

 (c) Draw a schematic that implements the circuit. Assume that the signals \(d_1, d_0, c_1, c_0 \) are available only in TRUE form.

4. **(3 points)** Consider \(f(a, b, c) = \sum(0, 2, 3, 6) \). Use (repeated application of) Shannon’s expansion to implement this function using only multiplexers (2-to-1 MUXes, with 1-bit data and 1-bit control inputs) and NOT gates. Can you design this circuit using only 3 1-bit MUXes and 1 NOT gate?
5. (4 points) You are asked to design a circuit that:

- takes two 4-bit vectors \(X[3:0], Y[3:0]\) as inputs that are given in **4-bit two’s complement form**;
- produces a 4-bit output \(Z[3:0]\);
- When \(X, Y\) have the same sign (either both \(X, Y\) are positive numbers, or both are negative numbers), then the circuit produces \(Z = X - Y\);
- When \(X, Y\) have different signs (i.e. \(X\) is positive and \(Y\) is negative, or \(X\) is negative and \(Y\) is positive), then the circuit produces \(Z = X + Y\).

Design a circuit that implements such a function. You may assume that you have the following pre-designed circuit blocks already available to you:

- 4-bit adders \((A[3:0], B[3:0], C_{in} \text{ inputs, } S[3:0], C_{out} \text{ as outputs})\)
- Any and all types of multiplexors (MUXes), e.g. feel free to use these MUXes as black-boxes: 4-bit data with 1-bit control \((F[3:0] = c ? B[3:0] : A[3:0])\)
- Any Boolean logic gates AND/OR/NOT/XOR/XNOR/NAND/NOR/whatever