Two-Level Logic Minimization: Terminology and Problem Statement

Priyank Kalla

UNIVERSITY
 ${ }^{0} \mathrm{~F}$ UTAH

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Terminilogy

- Binary Variable $=$ symbol. Represents a co-ordinate of Boolean space spanned by n-variables (called B^{n}), where $n=$ the number of variables of the function
- Literal: Boolean variable, or its complement
- $f=a+a^{\prime} b$ has how many literals? 2 or 3?
- Minterm: a point in the Boolean space
- A product of all n literals
- Cube: a point, or a set of points in B^{n}
- A product of literals, may contain fewer than n literals
- Terminology comes from n-D cube
- $a^{\prime} b c+a b c: 2$ cubes. $b c$ is a smaller or larger cube?

n-Dimensional Cube

- Expand the cubes, 1-hamming distance at a time.
- Hamming distance?

1-Hamming distance
only 1-bit changes

Implicants of a Function

- Implicant: Same thing as an ON-SET cube; "implies" the value of the function (=1)
- Prime Implicant: Not contained in any other implicant
- Prime implicant cannot be expanded
- Prime implicant is a largest cube
- One solution for logic minimization: $F=$ all prime implicants
- Problem: Redundancy! Too many ($\leq 3^{n} / n$) primes
- Still have to make choices...
- Greedy strategy does not always work
- Quine-McCluskey gave a systematic solution to find a minimum cost cover of a function

Exact Logic Minimization

- Prime Cover: A Cover containing only prime implicants
- Quine's Theorem:
- There exists a minimum cover that is prime!
- Thats why, analyze only prime implicants
- Quickly generate all prime implicants: Expand all ON-set cubes as much as possible!
- Identify all essential primes
- Now select a minimum from the remaining ones...
- "Minimum number of primes" versus "A minimum number of primes with minimum cost". See Fig. 2.57.
- A Minimum Cost cover is NOT unique, see Fig. 2.54 (iv)

So, the strongest problem formulation is: Find a minimum cost cover from among the prime implicants that contains a minimum number of primes!

