Appendix B

Implementation Technology
Figure B.1. Logic values as voltage levels.
Figure B.2. NMOS transistor as a switch.
Figure B.3. PMOS transistor as a switch.

(a) A switch with the opposite behavior of Figure 3.2a

(b) PMOS transistor

(c) Simplified symbol for a PMOS transistor
Figure B.4. NMOS and PMOS transistors in logic circuits.
Figure B.5. A NOT gate built using NMOS technology.
Figure B.6. NMOS realization of a NAND gate.
Figure B.7. NMOS realization of a NOR gate.
Figure B.8. NMOS realization of an AND gate.
Figure B.9. NMOS realization of an OR gate.
Figure B.10. Structure of an NMOS circuit.
Figure B.11. Structure of a CMOS circuit.
Figure B.12. CMOS realization of a NOT gate.
Figure B.13. CMOS realization of a NAND gate.
Figure B.14. CMOS realization of a NOR gate.
Figure B.15. CMOS realization of an AND gate.
Figure B.16. The circuit for Example B.1.
Figure B.17. The circuit for Example B.2.
Figure B.18. Voltage levels in the circuit in Figure B.13.
Figure B.19. Interpretation of the circuit in Figure B.18.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Positive logic truth table and gate symbol

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) Negative logic truth table and gate symbol
Figure B.20. Interpretation of voltage levels.
Figure B.21. A 7400-series chip.

(a) Dual-inline package

(b) Structure of 7404 chip
Figure B.22. An implementation of $f = x_1 x_2 + \overline{x}_2 x_3$.
Figure B.23. The 74244 buffer chip.
Figure B.24. Programmable logic device as a black box.
Figure B.25. General structure of a PLA.
Figure B.26. Gate-level diagram of a PLA.
Figure B.27. Customary schematic for the PLA in Figure B.26.
Figure B.28. An example of a PLA.
Figure B.29. The 22V10 PAL device.
Figure B.30. The 22V10 macrocell.
Figure B.31. A PLCC package with socket.
Figure B.32. Structure of a complex programmable logic device (CPLD).
Figure B.33. A section of the CPLD in Figure B.32.
Figure B.34. CPLD packaging and programming.
Figure B.35. A field-programmable gate array (FPGA).

Please see “portrait orientation” PowerPoint file for Chapter B.
Figure B.36. A two-input lookup table (LUT).

(a) Circuit for a two-input LUT

(b) $f_1 = x_1\overline{x_2} + x_1x_2$

(c) Storage cell contents in the LUT
Figure B.37. A three-input LUT.
Figure B.38. Inclusion of a flip-flop in an FPGA logic block.
Figure B.39. A section of a programmed FPGA.
Figure B.40. A section of two rows in a standard-cell chip.
Figure B.41. A sea-of-gates gate array.
Figure B.42. The logic function $f_1 = x_2\overline{x}_3 + x_1x_3$ in the gate array of Figure B.41.
Figure B.43a. NMOS transistor when turned off.

(a) When $V_{GS} = 0$ V, the transistor is off.
(b) When $V_{GS} = 5$ V, the transistor is on.

Figure B.43b. NMOS transistor when turned on.
Figure B.44. The current-voltage relationship in the NMOS transistor.
Figure B.45. Voltage levels in the NMOS inverter.
Figure B.46. The voltage transfer characteristic for the CMOS inverter.
Figure B.47. Parasitic capacitance in integrated circuits.

(a) A NOT gate driving another NOT gate

(b) The capacitive load at node A
Figure B.48. Voltage waveforms for logic gates.
Figure B.49. Transistor sizes.
Figure B.50. Dynamic current flow in CMOS circuits.
Figure B.51. NMOS and PMOS transistors used in the opposite way from Figure B.4.
Figure B.52. A Poor implementation of a CMOS AND gate.

(a) An AND gate circuit

(b) Truth table and voltage levels

<table>
<thead>
<tr>
<th>Logic value</th>
<th>Voltage</th>
<th>Logic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1 x_2</td>
<td>V_f</td>
<td>f</td>
</tr>
<tr>
<td>0 0</td>
<td>1.5 V</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1.5 V</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>1.5 V</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>3.5 V</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure B.53. A transmission gate.
Figure B.54. A 2-to-1 multiplexer built using transmission gates.
Figure B.55. Implementation of an XOR gate.
Figure B.56. Using transmission gates to implement a gated D latch.
Figure B.57. High fan-in NMOS NAND gate.
Figure B.58. High fan-in NMOS NOR gate.
Figure B.59. The effect of fan-out on propagation delay.
Figure B.60. A noninverting buffer.
Figure B.61. Tri-state driver.
Figure B.62. Tri-state driver.
Figure B.63. An application of tri-state drivers.
Figure B.64. An SRAM cell.
Figure B.65. A 2 x 2 array of SRAM cells.
Figure B.66. A $2^m \times n$ SRAM block.
Figure B.67. An example of a NOR-NOR PLA.
Figure B.68. Using EEPROM transistors to create a programmable NOR plane.
Figure B.69. Programmable version of a NOR-NOR PLA.
Figure B.70. A NOR-NOR PLA used for sum-of-products.
Figure B.71. PAL programmed to implement two functions in Figure B.70.
Figure B.72. A $2^m \times n$ read-only memory (ROM) block.
Figure B.73. Pass-transistor switches in FPGAs.
Figure B.74. Restoring a high voltage level.
Figure B.75. The AOI cell for Example B.13.
Figure B.76. Circuit for Examples B.13 and B.14.
Figure B.77. The pseudo-NMOS inverter.
Figure PB.1. A sum-of-products CMOS circuit.
Figure PB.2. A CMOS circuit built with multiplexers.
Figure PB.3. Circuit for problem B.3.
Figure PB.4. A three-input CMOS circuit.
Figure PB.5. A four-input CMOS circuit.
Figure PB.6. The PDN in a CMOS circuit.
Figure PB.7. The PUN in a CMOS circuit.
Figure PB.8. The pseudo-PMOS inverter.
Figure PB.9. A gate-array logic cell.
Figure PB.10. Circuit for problem B.51.
Figure PB.11. Circuit for problem B.52.