Synthesis and Verification of Digital Systems

Outline

- Review of current decomposition methods
 - Algebraic
 - Boolean
- Theory of BDD decomposition [C. Yang 1999]
 - Bi-decomposition \(F = D \Theta Q \)
 - Boolean AND/OR Decomposition
 - Boolean XOR Decomposition
 - MUX Decomposition
- Logic optimization based on BDD decomposition

Functional Decomposition – previous work

- Ashenhurst [1959], Curtis [1962]
 - Tabular method based on cut: bound/free variables
 - BDD implementation:
 - Lai et al. [1993, 1996], Chang et al. [1996]
 - Stanion et al. [1995]
- Roth, Karp [1962]
 - Similar to Ashenhurst, but using cubes, covers
 - Also used by SIS
- Factorization based
 - SIS, algebraic factorization using cube notation
 - Bertacco et al. [1997], BDD-based recursive bidecomp.

Drawbacks of Traditional Synthesis Methods

- Weak Boolean factorization capability.
- Difficult to identify XOR and MUX decomposition.
- Separate platforms for Boolean operations and factorization.
- Our goal: use a common platform to carry out both Boolean operations and factorization: BDD's
What is wrong with Algebraic Division?

- Divisor and quotient are orthogonal!!
- Better factored form might be:
 \[(q_1 + q_2 + \ldots + q_n) (d_1 + d_2 + \ldots + d_m)\]
 - \(g_i\) and \(d_j\) may share same or opposite literals

- Example:
 SOP form: \(F = abg + acg + adf + aef + afg + bd + ce + be + cd\). (23 lits)
 Algebraic: \(F = (b + c)(d + e + ag) + (d + e + g)af\). (11 lits)
 Boolean: \(F = (af + b + c)(ag + d + e)\). (8 lits)

First work, Karplus [1988]: 1-dominator

- Definition: 1-dominator is a node that belongs to every path from root to terminal 1.

1-dominator defines algebraic conjunctive (AND) decomposition: \(F = (a+b)(c+d)\).

Karplus: 0-dominator

- Definition: 0-dominator is a node that belongs to every path from root to terminal 0.

0-dominator defines algebraic disjunctive (OR) decomposition: \(F = ab + cd\).

Bi-decomposition based on Dominators

- We can generalize the concept of algebraic decomposition and dominators to:
 - Generalized dominators
 - Boolean bi-decompositions (AND, OR, XOR)
 - Bi-decomposition: \(F = D \Theta Q\)

- First, let's review fundamental theorems for Boolean division and factoring.
Boolean Division

Definitions

- **Boolean divisor** of \(F \) if there exist \(H \) and \(R \) such that \(F = G H + R \), and \(G H \neq 0 \).

- \(G \) is said to be a **factor** of \(F \) if, in addition, \(R=0 \), that is:
 \[
 F = G H
 \]

 where \(H \) is the quotient, \(R \) is the remainder.

 Note: \(H \) and \(R \) may not be unique.

Boolean Factor - Theorem

Theorem:

Boolean function \(G \) is a **Boolean factor** of Boolean function \(F \) iff \(F \subseteq G \), (i.e. \(FG' = 0 \), or \(G' \subseteq F' \)).

Proof:

\[
\begin{align*}
\Rightarrow: & \quad G \text{ is a Boolean factor of } F. \text{ Then } \exists H \text{ s.t. } F = GH; \\
& \quad \text{Hence, } F \subseteq G \text{ (as well as } F \subseteq H). \\
\Leftrightarrow: & \quad F \subseteq G \Rightarrow F = GF = G(F + R) = GH. \\
& \quad (\text{Here } R \text{ is any function } R \subseteq G').
\end{align*}
\]

Notes:

- Given \(F \) and \(G \), \(H \) is not unique.
- To get a small \(H \) is the same as getting a small \(F + R \).
 - Since \(RG = 0 \), this is the same as minimizing (simplifying) \(f \) with \(DC = G' \).

Boolean Division - Theorem

Theorem:

\(G \) is a **Boolean divisor** of \(F \) if and only if \(FG \neq 0 \).

Proof:

\[
\begin{align*}
\Rightarrow: & \quad F = GH + R, \quad GH \neq 0 \Rightarrow FG = GH + GR. \quad \text{Since } GH \neq 0, \quad FG \neq 0. \\
\Leftrightarrow: & \quad \text{Assume that } FG \neq 0. \quad F = FG + FG' = G(F + K) + FG'. \quad (\text{Here } K \subseteq G'). \\
& \quad \text{Then } F = GH + R, \quad \text{with } H = F + K, \quad R = FG'. \quad \text{Since } GH = FG \neq 0, \text{ then } GH \neq 0.
\end{align*}
\]

Note:

- \(f \) has many divisors. We are looking for a \(g \) such that \(f = gh + r \), where \(g, h, r \) are simple functions. (simplify \(f \) with \(DC = g' \))

Boolean Division

Goal: for a given \(F \), find \(D \) and \(Q \) such that \(F = Q \cdot D \).

Boolean Space

\[
F = e + bd, \quad D = e + d, \quad Q = e + b
\]
Conjunctive (AND) Decomposition

- Conjunctive (AND) decomposition: \(F = D \cdot Q \).
- Theorem:
 Boolean function F has conjunctive decomposition iff \(F \subseteq D \). For a given choice of D, the quotient Q must satisfy: \(F \subseteq Q \subseteq F + D' \).

\[
\begin{align*}
Q & \subseteq F \\
D & \supseteq F
\end{align*}
\]

- For a given pair \((F,D)\), this provides a recipe for Q.

Boolean Division \(\Rightarrow \) AND decomposition

Given function F and divisor \(D \supseteq F \), find Q such that:
\(F \subseteq Q \subseteq F + D' \).

Disjunctive (OR) Decomposition

- Disjunctive (OR) decomposition: \(F = G + H \).
- Theorem:
 Boolean function F has disjunctive decomposition iff \(F \supseteq G \). For a given choice of G, the term H must satisfy: \(F' \subseteq H' \subseteq F' + G \).

\[
\begin{align*}
F & \supseteq G \\
H' & \supseteq F' + G
\end{align*}
\]

Dual to conjunctive decomposition.

- For a given \((F,G)\), this provides a recipe for H.
Boolean AND/OR Bi-decompositions

- Conjunctive (AND) decomposition
 \[\text{If } D \supseteq F, \quad F = F \cap D = QD. \]

- Disjunctive (OR) decomposition
 \[\text{If } G \subseteq F, \quad F = F + G = H + G. \]

- \(D, G \) = generalized dominators

Generalized Dominator D

Boolean divisor
\[F = DQ \]

Generalized Dominator G

Boolean "subtractor"
\[F = G + H \]

Boolean Division Based on Generalized Dominator

\[D = af + b + c \]
\[Q = ag + d + e \]
Special Case: 1-dominator

\[F = (a+b)(c+d) \]

Special Case: 0-dominators

\[F = ab + cd \]

Algebraic XOR Decomposition

\[F = h \iff f \quad h' \iff f' \]

Algebraic XOR Decomposition: x-dominators

\[x \iff a + b \quad c + d \]

\[= \text{complement edge} \]
\[= 1 \text{-edge edge} \]
\[= 0 \text{-edge edge} \]
Boolean XOR Decomposition: Generalized x-dominators

Given F and G, there exists $H : F = G \otimes H ; H = F \otimes G$.

MUX Decomposition

- Simple MUX decomposition

 ![Simple MUX decomposition diagram]

- Complex MUX decomposition

 ![Complex MUX decomposition diagram]

Functional MUX Decomposition - example

![Functional MUX decomposition example diagram]

Synthesis Flow

Boolean Network

- Construct Global BDDs
- Variable Reorder
- Decompose BDD
- Construct Factoring Trees
- Factoring Tree Processing
- Technology Mapping
Factoring Tree Processing:

A Complete Synthesis Example

A Complete Synthesis Example (Decompose function g)

A Complete Synthesis Example (Decompose function h)
A Complete Synthesis Example (Sharing Extraction)

Conclusions

- BDD-based *bi-decomposition* is a good alternative to traditional, algebraic logic optimization
 - Produces *Boolean* decomposition
 - Several types: AND, OR, XOR, MUX

- BDD decomposition-based logic optimization is *fast*.

- Stand-alone BDD decomposition scheme is not amenable to large circuits
 - *Global BDD* too large
 - Must partition into network of BDDs (local BDDs)