Formal Derivation of Covering Problem

Each choice is represented with a Boolean variable x;.

Xx; = 1 implies choice has been included in the solution.

Xx; = 0 implies choice has not been included in the solution.
Covering problem is expressed as a product-of-sums, F.
Each product (or clause) represents a constraint.

Each clause is sum of choices that satisfy the constraint.

e &€ 6 6 6 ¢ ¢

Goal: find x;’s which satisfy all constraints with minimum cost.

t
cost = min) wx (1)
=
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Example Covering Problem

f = X1X_2(X_3+X4)(X_3+X4+X5+X6)(ﬁ+X4+X5 +X6)

(Xa+x1 +x5) (X5 + X)
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Unate versus Binate

@ Unate covering problem - choices appear only in their positive form (i.e.,
uncomplemented).

@ Binate covering problem - choices appear in both positive and negative
form (i.e., complemented).

@ Algorithm presented here considers the more general case of the binate
covering problem, but solution applies to both.
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Constraint Matrix

f is represented using a constraint matrix, A.
Includes a column for each x; variable.
Includes a row for every clause.

Each entry of the matrix ag; is:

e -’ if the variable x; does not appear in the clause,
@ 0’ if the variable appears complemented, and
@ 1’ otherwise.

i row of A is denoted a;.

e ©

j™ column is denoted by A;.
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Constraint Matrix Example

X1 X2 (X3 + Xa) (X3 + Xa + X5 + X ) (X1 + X4 + X5 + Xg)

(74+X1 +X6)(75+X6)

Chris J. Myers (Lecture 5: Huffman Circuits)
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Binate Covering Problem

@ The binate covering problem is to find an assignment to x of minimum
cost such that for every row a; either
Q J.(g=1)A(x=1);0r
Q . (a,'jZO)/\(XI'ZO).
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;
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Reduce Algorithm

reduce (A, x)

do
A =A;
(A,x) = find_essential_rows (A, X);
A = delete_dominating_rows (A);
(A,x) = delete_dominated_columns (A, X);

while (A0 and A#£A');
return (A, Xx) ;
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Essential Rows

@ Arow g; of Ais essential when there exists exactly one j such that a;; is
not equal to ’-’.

This cooresponds to clause consisting of a single literal.

If the literal is x; (i.e., a; = 1), the variable is essential.

If the literal is X; (i.e., a; = 0), the variable is unacceptable.
The matrix A is reduced with respect to the essential literal.

e &6 ¢ o ¢

This variable is set to value of literal, column is removed, and any row
where variable has same value is removed.
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Essential Rows Example

f =

X

1

X2

X3

0
0

X1 X2 (X3 + X4 ) (X3 + Xa + X5+ X6 ) (X1 + X4 + X5 + Xg)
(Xa+x1+ x6) (X5 + X6)

NOoO ok~ W=
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Essential Rows Example

fo= Xa(X3+xa) (X3 +Xa+ X5 + X6 ) (X4 + X5 + X6 ) (X5 + X6)

Xo X3 X4 X5 Xg

0o — — — —

-0 1 1 1

- — 1 1 1

- — — 0 1
X1 = 1

N O~ WD
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Essential Rows Example

fo= (X+xs)(X+Xs+ X5+ Xe)(Xa + X5+ X5) (X5 + Xo)
X3 X4 X5 Xp
0o 1 — — 3
0o 1 1 1 4
A= 1 1 A 5
- — 0 1 7

X1:1,X2:0
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Row Dominance

@ A row ax dominates another row g; if it has all 1’'s and 0’s of a;.

@ Row a, dominates another row g; if for each column A; of A, one of the
following is true:

® gj=—
@ gjj = dayj

@ Removing dominating rows does not affect set of solutions.
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Row Dominance Example

fo= (X+xs)(X+Xs+ X5+ Xe)(Xa + X5+ X5) (X5 + Xo)
X3 X4 X5 Xp
0o 1 — — 3
0o 1 1 1 4
A= 1 1 A 5
- — 0 1 7

X1:1,X2:0
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Row Dominance Example

(X_3+ X4)(X4 + X5 + Xe)(X_5+ Xe)

X3 X4 X5 Xg

|
—
—
—
o

Asynchronous Circuit Design



Column Dominance

@ A column A; dominates another column Ay if for each clause a; of A, one
of the following is true:

@ g;j=1,
¢ g;=—and ay # 1;
o gj=0and ayx = 0.
@ Dominated columns can be removed without affecting the existence of a
solution.
@ When removing a column, the variable is set to 0 which means any rows
including that column with a 0 entry can be removed.
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Column Dominance Example

(% + Xa) (X4 + X5 + X6) (X5 + X6

X3 X4 X5 Xp

|
—
—
—
o
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Column Dominance Example

f= (xa+x)

X4 Xe
A= [1 1] 5

X1=1,x%=0,x3=0,x5 =0
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Checking Weights

@ If weights are not equal, it is necessary to also check the weights of the
columns before removing dominated columns.

@ If weight of dominating column, w;, is greater than weight of dominated
column, wy, then x, should not be removed.

@ Assume w; =3, wo =1,and wg = 1.

X1 X2 X3

24 /234
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design
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@ If solved, cost of solution can be determined by Equation 1.

@ Reduced matrix may have a cyclic core.

@ Must test whether or not a good solution can be derived from partial
solution found up to this point.

@ Determine a lower bound, L, on the final cost, starting with the current
partial solution.

@ If Lis greater than or equal to the cost of the best solution found, the
previous best solution is returned.

26 /234
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Maximal Independent Set

@ Finding exact lower bound is as difficult as solving the covering problem.

@ Satisfactory heuristic method is to find a maximal independent set (MIS)
of rows.

@ Two rows are independent when it is not possible to satisfy both by
setting a single variable to 1.

@ Any row which contains a complemented variable is dependent on any
other clause, so we must ignore these rows.
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Lower Bound Algorithm

lower_bound (A, x)

MIS =10
A = delete_rows_with_complemented_variables (A);
do

i =choose_shortest_row (A);

MIS = MIS U {i};

A =delete_intersecting_rows (A,i);
while (A#0);
return (|[MIS| + cost (X));
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Bounding Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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Bounding Example

- - -1 1 - - - - 3

- - -1 -1 - = - 4

- -1 -1 1 - — - 5

e I 6

- - -1 - - -1 - 8

- - — 1 - — — — 1] 9
MIS = {1}
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Bounding Example

X1 Xo X3 X4 X5 Xe X7 Xg Xog
A= [- -1 — — — 1 — —] &6

MIS = {1,3}
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Bounding Example

1 1 - —
1 — 1
-1 1
1___
1 - - _

MIS = {1,3,6}

Asynchronous Circuit Design
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design
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Termination

@ If A has no more rows, then all the constraints have been satisfied by x,
and it is a terminal case.

@ If no solution exists, it is also a terminal case.
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Infeasible Problems

f=(x+x)X+x)(x1 +X) (X1 +X2)

X1 X2

1 1 1

0 1 2
A= 10 3

00 4
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design
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Branching

If A is not a terminal case, matrix is cyclic.

To find minimal solution, must determine column to branch on.
A column intersecting short rows is prefered for branching.
Assign a weight to each row that is inverse of row length.
Sum the weights of all the rows covered by a column.

e 6 © © ¢ ¢

Column x; with highest value is chosen for case splitting.
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Branching Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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e 6 © ¢ ¢ ¢

X is added to the solution and constraint matrix is reduced.
bep is called recursively and result assigned to x”.

If x' better than best, record it.

If x' meets lower bound L, it is minimal.

If not, remove x. from solution and call bep.

If x° better than best, return it.

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;
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Branching Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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Branching Example

X1 Xo X3 X5 Xg X7 Xg Xo

1 1 - — — — — — 1

1 — 1 - — — - - 2

- -1 1 1 - - = 5

A=\ 4 2 Z 1 - _ 6

-1 - - -1 - - 7

|- 1 — — — — 1 1] 10
X4 =1
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Branching Example

X1 Xo X3 X7

11 - — 1
1 - 1 = 2
- -1 - 5
- — 11 6
— 1 - 1 7
-1 - =1 10
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Branching Example

Xo=1,x3=1,x4=1,x5=0,%=0,x3=0,xg=0
cost(x') =3
Recall that L=3

Therefore, we are done.
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Branching Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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Branching Example

11— — — — — —7 A
1 - 1 - - — - - 2
- - -1 - - - - 3
e 4
- -1 11 - - = 5
e T A 6
-1 - - -1 - - 7
- - - - - -1 - 8
- - - - = = = A 9
- 1 — — — — 1 1] 10
X4—0
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Branching Example

|

|

—

—
N~No =

X4:O,X5:1,X6:1,X8:1,Xg:1
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