First, let us evaluate kernel/co-kernel pairs.

\[K_f = \{ \frac{xy+3}{u}, \frac{uv+wy+3}{v}, \frac{(u+w)}{y}, \frac{(u+n+vw+x)}{y}, \frac{u+v}{z}, \frac{f}{1} \} \]

\[K_g = \{ \frac{vz+xy}{u}, \frac{u+w}{vz}, \frac{uv+3}{x}, \frac{uv+vw+x}{y}, \frac{uv+vw+x+y}{z}, \frac{g}{1} \} \]

Both \(f \) and \(g \) have common co-\(K \), and common subexpressions from kernels. Common co-kernels are only single literals. Extracting single literal co-kernels won't reduce literal cost. So, find common subexpressions from kernels.

3 common expressions: \(K_f \cap K_g = \{ \frac{u+w}{vz}, \frac{uv+vw+x}{y} \} \)

Should we use this one, extract more cubes?
Divide \(f \div uv + vw + x \) \& \(g \div uv + vw + x \)

\[f = y(h) + u_3 + v_3 \]
\[g = uxy + 3z(h) + y_3 = 3z(h) + uxy + y_3 \]
\[h = uv + vw + x. \]

\(f \& g \) are of the form \(Q, D, + R \) and in \(SOP \) form. Factorize to expose more co- \(x/1 \).

\[f = y_1(h) + z(u+v) \]
\[g = z_1h + y_1(ux+z) \]
\[h = v(u+w) + x \]

Now, also try to divide \(f, g \) by \(y_1 + z_1 = h \).
\[
\begin{align*}
\{ f &= v \cdot (h + wy) + u z + x y \\
g &= x \cdot h + v z (w + u) + y z \\
h &= u y + z.
\}
\]

(factorize further)

\[
\begin{align*}
\{ f &= v (h + wy) + u z + x y \\
g &= x h + z [v (w + u) + y] \\
h &= u y + z
\}
\]

In this case greedy extraction worked.