Logic Synthesis

Timing Analysis
Timing Analysis - Delay Models

• Simple model 1:

\[A_k = \text{arrival time} = \max(A_1, A_2, A_3) + D_k \]

\(D_k \) is the delay at node \(k \), parameterized according to function \(f_k \) and fanout node \(k \)

• Simple model 2:

\[A_k = \max\{A_1 + D_{k_1}, A_2 + D_{k_2}, A_3 + D_{k_3}\} \]

• Can also have different times for \text{rise time} and \text{fall time}
Static delay analysis

// level of PI nodes initialized to 0,
// the others are set to -1.
// Invoke LEVEL from PO
Algorithm LEVEL(k) { // levelize nodes
 if (k.level != -1)
 return (k.level)
 else
 k.level = 1+max{LEVEL(k_i) | k_i ∈ fanin(k)}
 return (k.level)
}

// Compute arrival times:
// Given arrival times on PI’s
Algorithm ARRIVAL() {
 for L = 0 to MAXLEVEL
 for {k|k.level = L}
 A_k = MAX{A_k_i} + D_k
}

Required Times

Required times:

given required times on primary outputs

- Traverse in reverse topological order (i.e. from primary outputs to primary inputs)
- if \((k_i, k)\) is an edge between \(k_i\) and \(k\), \(R_{k_i,k} = R_k - D_k\)
 (this is the edge required time)
- Hence, the required time of output of node \(k\) is
 \(R_k = \min (R_{k,k_j} | k_j \in \text{fanout}(k)) \)
Propagating Slacks

Slacks: slack at the output node k is $S_k = R_k - A_k$

Since $R_{ki,k} = R_k - D_k$

$$S_{ki,k} = R_{ki,k} - A_{ki}$$

$$S_{ki,k} + A_{ki} = R_k - D_k = S_k + A_k - D_k$$

Since $A_k = \max \{A_{kj}\} + D_k$

$$S_{ki,k} = S_k + \max \{A_{kj}\} - A_{ki} \quad k_j, \ k_i \in \text{fanin} (k)$$

$$S_{ki} = \min\{S_{ki,j}\} \quad j \in \text{fanout} (k_i)$$

Notes:
- Each edge is the graph has a slack and a required time
- Negative slack is bad.
Sequential networks

- Arrival times known at l_1 and l_2
- Required times known at l_3, l_4, and l_5
- Delay analysis gives arrival and required times (hence slacks) for C_1, C_2, C_3, C_4
Min-Max problem: minimize $\max\{-S_i, 0\}$

A static critical path of a Boolean network is a path $P = \{i_1, i_2, \ldots, i_p\}$ where $S_{i_k, i_{k+1}} < 0$

Note: if a node k is on a static critical path, then at least one of the fanin edges of k is critical. Hence, all critical paths reach from an input to an output.

Note: There may be several critical paths
Example: Static critical paths

\[S_{ki,k} = S_k + \max\{A_{kj}\} - A_{ki}, \ k, j, i \in \text{fanin}(k) \]
\[S_k = \min\{S_{k,j}\}, \ j \in \text{fanout}(k) \]
Timing analysis problems

We want to determine the true critical paths of a circuit in order to:

– determine the minimum cycle time that the circuit will function
– identify critical paths from performance optimization - don’t want to try to optimize the wrong (non-critical) paths

Implications:

– Don’t want false paths (produced by static delay analysis)
– Delay model is worst case model. Need to ensure correctness for case where i^{th} gate delay $\leq D_i^M$
Functional Timing Analysis

What is Timing Analysis?
Estimate when the output of a given circuit gets stable
Why Timing Analysis?

Timing verification
 – Verifies whether a design meets a given timing constraint
 • Example: cycle-time constraint

Timing optimization
 – Needs to identify critical portion of a design for further optimization
 • Critical path identification

In both applications, the more accurate, the better
Timing Analysis - Basics

Naïve approach - Simulate all input vectors with SPICE
 – Accurate, but too expensive

Gate-level timing analysis

Focus of this lecture
 – Less accurate than SPICE due to the level of abstraction, but much more efficient
 – Scenario:
 • Gate/wire delays are pre-characterized (accuracy loss)
 • Perform timing analysis of a gate-level circuit assuming the gate/wire delays
Gate-level Timing Analysis

A naive approach is topological analysis
- Easy longest-path problem
- Linear in the size of a network

Not all paths can propagate signal events
- False paths
- If all longest paths are false, topological analysis gives delay overestimate

Functional timing analysis = false-path-aware timing analysis
- Compute false-path-aware arrival time

\[\text{arr}(z)? \]

\[\text{arr}(x_1) = 0 \quad \text{arr}(x_2) = 0 \]
Example: 2-bit Carry-skip Adder

- **c_in**
- **a0**
- **b0**
- **a1**
- **b1**
- **s0**
- **s1**
- **c_out**

- **Length 5**
- **Length 1**

Ripple carry adder
False Path Analysis - Basics

Is a path responsible for delay?
 – If the answer is no, can ignore the path for delay computation

Check the falsity of long paths until we find the longest true path
 – How can we determine whether a path is false?

Delay underestimation is unacceptable
 – Can lead to overlooking a timing violation

Delay overestimation is not desirable, but acceptable
 – Topological analysis can give overestimate, but never give underestimate
Controlling/Non-Controlling Values

Controlling value of AND

- 0

Non-Controlling value of AND

- 1

Controlling value of OR

- 1

Non-Controlling value of OR

- 0
Static Sensitization

A path is *statically-sensitizable* if there exists an input vector such that all the side inputs to the path are set to non-controlling values
- This is *independent* of gate delays

The longest true path is of length 2?

These paths are not *statically-sensitizable*
Static Sensitization

- The (dashed) path is responsible for delay!
- Delay underestimation by static sensitization (delay = 2 when true delay = 3)
 - incorrect condition
What is Wrong with Static Sensitization?

The idea of forcing non-controlling values to side inputs is okay, but timing was ignored
- The same signal can have a controlling value at one time and a non-controlling value at another time.

How about timing simulation as a correct method?
Timing Simulation

Implies that delay = 0 for these inputs BUT!
Implies that delay = 4 with the same set of inputs.
What is Wrong with Timing Simulation?

If gate delays are reduced, delay estimates can increase

Not acceptable since

– Gate delays are just upper-bounds, actual delay is in [0,d]
 • Delay uncertainty due to manufacturing
– We are implicitly analyzing a family of circuits where gate delays are within the upper-bounds
Monotone Speedup Property

Definition: For any circuit C, if
- C' is obtained from C by reducing some gate delays, and
- $\text{delay_estimate}(C') \leq \text{delay_estimate}(C)$,
then delay_estimate has *Monotone Speedup*

Timing simulation does *not* have this property
Timing Simulation Revisited

means that the rising signal occurs anywhere between $t = -\infty$ and $t = 4$.

X-valued simulation
Timing Simulation Revisited

Timed 3-valued \((0,1,X)\) simulation
- called X-valued simulation

Monotone speedup property is satisfied.

Underlying model of
- *floating mode condition* [Chen, Du]
 - Applies to “simple gate” networks only
- *viability* [McGeer, Brayton]
 - Applies to general Boolean networks
False Path Analysis Algorithms

Checking the falsity of every path explicitly is too expensive - exponential # of paths

State-of-the-art approach:
1. Start: set $L = L_{top}$, $L_{old} = 0$
2. Binary search:
 If (Delay(L)) (*)
 ! $L = |L-L_{old}|/2$, $L_{old} = L$, $L = L + ! L$
 Else, ! $L = |L-L_{old}|/2$, $L_{old} = L$, $L = L - ! L$
 If ($L > L_{top}$ or $! L < threshold$), $L = L_{old}$, done

(*) Delay(L) = 1 if there an input vector under which an output gets stable only at time t where $L \leq t$?

Can be reduced to
- a SAT problem [McGeer, Saldanha, Brayton, ASV] or
- a timed-ATPG [Devadas, Keutzer, Malik]
SAT-based False Path Analysis

Decision problem:
Is there an input vector under which the output gets stable only after $t = T$?

Idea:
1. characterize the set of all input vectors $S(T)$ that make the output stable no later than $t = T$
2. check if $S(T)$ contains $S = \text{all possible input vectors}$
 This check is solved as a SAT problem:
 - Is $S \setminus S(T)$ empty? - set difference + emptiness check
 - Let F and $F(T)$ be the characteristic functions of S and $S(T)$
 - Is $F \land \neg F(T)$ satisfiable?
Example

Assume all the PIs arrive at $t = 0$, all gate delays = 1
Is the output stable time $t > 2$?
Example

g(1,t=2) : the set of input vectors under which g gets stable to value = 1 no later than t = 2

\[
g(1,t=\infty) = \text{onset} = \lnot a!bc = g(1,t=2) = S_1
\]

\[
g(1,t=2) = d(1,t=1) \cap f(1,t=1) = (a(0,t=0) \cap b(0,t=0)) \cap (c(1,t=0) \cup e(1,t=0)) = \lnot a!b(c \cup \emptyset) = \lnot a!bc = S_1(t=2)
\]
Example

\[g(0, t=2) : \text{the set of input vectors under which } g \text{ gets stable to value } = 0 \text{ no later than } t=2 \]

\[g(0, t=2) = d(0, t=1) \cup f(0, t=1) \]
\[= (a(1, t=0) \cup b(1, t=0)) \cup (c(0, t=0) \cap e(0, t=0)) \]
\[= (a+b) + (!c \cap \emptyset) = a+b = S_0(t=2) \]

\[g(0, t=\infty) = \text{offset } = a+b+!c = S_0 \]
Example

\(g(0,t=2) \) : the set of input vectors under which
g gets stable to 0 no later than \(t=2 \)

\[g(0,t=2) = a+b \]
\[g(0,t=\infty) = \text{offset} = a+b+!c \]
\[g(0,t=\infty) \setminus g(0,t=2) = (a+b+!c) \land (a+b) = !a \land !b \land !c = \text{satisfiable} \]
Summary

False-path-aware arrival time analysis is well-understood
 – Practical algorithms exist
 • Can handle industrial circuits easily

Remaining problems
 – Incremental analysis (make it so that a small change in the circuit does not make the analysis start all over)
 – Integration with logic optimization
 – DSM issues such as cross-talk-aware false path analysis
Timed ATPG

Yet another way to solve the same decision problem

A generalization of regular ATPG:
 – regular ATPG
 • find an input vector that differentiates a fault-free circuit and a faulty circuit in terms of functionality
 – Timed ATPG
 • find an input vector that exhibits a given timed behavior
 • Timed extension of PODEM