Logic Synthesis

Timing Analysis

Courtegy RK Brayton (UCB) and A
Kuehlmann (Cadence)

Timing Analysis - Delay Models

Simple model 1:
‘Ak

W

A, = arrival time = max(A,,A,A;) + D,

D, is the delay at node k, parameterized according to function f, and
fanout node k

| \43
A2

Simple model 2: ‘Ak A, = max{A,+D,,,

Ak ' AytDy,,A31D, 5}
YA
D, D, Dys
A3 X
A2 A 1/ ‘AZ \A3

Can also have different times for rise time and fall time

A1

Static delay analysis

// level of PI nodes initialized to O,
// the others are set to -1.
// Invoke LEVEL from PO
Algorithm LEVEL (k) { // levelize nodes
if(k.level != -1)
return (k. level)
else
k.level = 1+max{LEVEL (k) |k, € fanin (k) }

return (k.level)

}

// Compute arrival times:
// Given arrival times on PI’s
Algorithm ARRIVAL () {
for L = 0 to MAXLEVEL
for {k|lk.level = L}

A, = MAX{A .} + D,

Required Times

Sk S
K
Required times: A
.
given required times on primary outputs é AL
i

 Traverse in reverse topological order (i.e. from primary outputs
to primary inputs)
. if(k;, k)is an edge between k;and k, R, ,= R,- D,

(this is the edge required time)
 Hence, the required time of output of node k is
R, = min (Rk’kj| k; € fanout(k))

Propagating Slacks

Slacks: slack at the output node kis S, = R,-A, S

k Sj
Since R;,,=R,-D, K
Siisk =Rk = Asi |
Skt Ay = R-Dy = S+ Ay~ D,
Since A, = max {A,} + D, A%

Sk =Sk tmax{A,}-A, K, k€ fanin (k)

S = min{S;} J € fanout (k;)

Notes:
« Each edge is the graph has a slack and a required time
* Negative slack is bad.

Sequential networks

L &0 —e
| @ y @&

15

13

Arrival times known at /, and /,
Required times known at /5, /,, and /5

Delay analysis gives arrival and required times (hence slacks) for
C, C, C,; C,

Static critical paths

Min-Max problem: minimize max{-S;, 0}

A static critical path of a Boolean network is a path P = {i,i,,...,i,}
where S.

I? iceq

Note: if a node k is on a static critical path, then at least one of the
fanin edges of k is critical. Hence, all critical paths reach from an
iInput to an output.

Note: There may be several critical paths

Example: Static critical paths

N
6| i1
2
A
al 4 T
2
V.
A e
\ ~~~~~~ -1
0
» 6
A
\o
8
A8=0

R2 5
51 1o
1
W
1
z1//<: \\\\\‘3
2 4 1 5
A
i1
o 12 1
& .
4
Q:l-1
A9=0

Siik= Sk + max{A,} - A

kis T\

A1=6
A2=5

R1=5
R2=5

S,=-1
S,=0
S =-1
S,y =-1
842—0
S5, =1
63= 0
73 = -1
74=-1
75= 1
g6= 0

R3=3
R7=1
R9=-1

ONONONORON
|

9,7 -1

critical path edges
k,k; € fanin(k)

Sy = min{S,, .}, k; € fanout(k)

Timing analysis problems

We want to determine the true critical paths of a circuit in order to:
— determine the minimum cycle time that the circuit will function
— identify critical paths from performance optimization - don’'t want to
try to optimize the wrong (non-critical) paths

Implications:
— Don’t want false paths (produced by static delay analysis)
— Delay model is worst case model. Need to ensure correctness for
case where ith gate delay < DM

Functional Timing Analysis

What is Timing Analysis?
Estimate when the output of a given circuit gets stable

l> O_
~ Combinational <l
| Dblock
"0

10

Why Timing Analysis?

Timing verification
— Verifies whether a design meets a given timing constraint
« Example: cycle-time constraint
Timing optimization
— Needs to identify critical portion of a design for further
optimization
* Critical path identification
In both applications, the more accurate, the better

11

Timing Analysis - Basics

Nailve approach - Simulate all input vectors with SPICE
— Accurate, but too expensive

Gate-level timing analysis

Focus of this lecture
— Less accurate than SPICE due to the level of abstraction, but
much more efficient
— Scenario:
« Gate/wire delays are pre-characterized (accuracy loss)
« Perform timing analysis of a gate-level circuit assuming
the gate/wire delays

12

Gate-level Timing Analysis

False
path
aware

arr(z)?

arr(x,)=0

arr(x,)=0

A naive approach is topological analysis
— Easy longest-path problem
— Linear in the size of a network

Not all paths can propagate signal events

— False paths
— If all longest paths are false, topological
analysis gives delay overestimate

Functional timing analysis = false-path-

aware timing analysis
— Compute false-path-aware arrival time

Example: 2-bit Carry-skip Adder

— 3 sO

0 Length 5 Length 1‘v

E)i _ s1
b0 5 - L

| PRR—
al
ppuan))

L

MuX

ripple carry adder

False Path Analysis - Basics

Is a path responsible for delay?
— If the answer is no, can ignore the path for delay computation

Check the falsity of long paths until we find the longest true path
— How can we determine whether a path is false?

Delay underestimation is unacceptable
— Can lead to overlooking a timing violation

Delay overestimation is not desirable, but acceptable
— Topological analysis can give overestimate, but never give
underestimate

15

Controlling/Non-Controlling Values

Controlled value of AND

~
Controlling value of AND Non-Controlling value of AND
Controlled value of OR
e
O))—

Controlling value of OR Non-Controlling value of OR

Static Sensitization

A path is statically-sensitizable if there exists an input vector such
that all the side inputs to the path are set to non-controlling

values
— This is independent of gate delays

Controlling value!

t=0 =7 P R0

t=0 adeesg,

These paths are not
statically-sensitizable

t=0

The longest true path
is of length 27? 17

Static Sensitization

The (dashed) path is responsible for delay!

Delay underestimation by static sensitization (delay = 2 when
true delay = 3)
— incorrect condition

18

What is Wrong with Static Sensitization?

The idea of forcing non-controlling values to side inputs

IS okay, but timing was ignored
— The same signal can have a controlling value at one time and
a non-controlling value at another time.

How about timing simulation as a correct method?

19

Timing Simulation

2 3
D

VY

1)
|

V4

0 4

Implies that delay = 0 for these inputs
BUT!

20

Timing Simulation

0%2 Iy
=By Ay
L Dy —
0/ 2

Implies that delay = 4 with the same set of
Inputs.

21

What is Wrong with Timing Simulation”?

If gate delays are reduced, delay estimates can increase

Not acceptable since
— Gate delays are just upper-bounds, actual delay is in [0,d]
« Delay uncertainty due to manufacturing
— We are implicitly analyzing a family of circuits where gate
delays are within the upper-bounds

22

Monotone Speedup Property

Definition: For any circuit C, if
— C’is obtained from C by reducing some gate delays, and
— delay_estimate(C’) < delay_estimate(C),

then delay_estimate has Monotone Speedup

Timing simulation does not have this property

23

Timing Simulation Revisited

D_s

7Y

1)
|

4

— means that the rising signal
occurs anywhere between
t = -infinity and t = 4.

X-valued simulation

WV

24

Timing Simulation Revisited

Timed 3-valued (0,1,X) simulation
— called X-valued simulation

Monotone speedup property is satisfied

Underlying model of

 floating mode condition [Chen, Du]
— Applies to “simple gate” networks only

* viability [McGeer, Brayton]

— Applies to general Boolean networks

False Path Analysis Algorithms

Checking the falsity of every path explicitly is too expensive - exponential # of
paths

State-of-the-art approach:
1. Start: setL =L, -!=topological longest path delay -!
Loig =0

2. Binary search:

If (Delay(L)) *)

L= |L-L4l/2, Lyg=L, L=L+!L
Else, L =|L-L4l/2, Ly =L, L=L-IL
If (L>L,,or!L <threshold), L=L,,, done

top

top

(*) Delay(L) = 1 if there an input vector under which an output gets stable only at time ¢
where L<t?

Can be reduced to
— a SAT problem [McGeer, Saldanha, Brayton, ASV] or
— atimed-ATPG [Devadas, Keutzer, Malik]

SAT-based False Path Analysis

Decision problem:
Is there an input vector under which the output gets stable only aftert=T ?

|dea

1. characterize the set of all input vectors S(T) that make the output
stable no laterthant=T

2. check if S(T) contains S = all possible input vectors
This check is solved as a SAT problem:
Is S\ S(T) empty? - set difference + emptiness check
« LetF and F(T) be the characteristic functions of S and S(T)
« Is FIF(T) satisfiable?

27

Example

—I>C : [N

b —1 L~ e f
.

Assume all the Pls arrive att = 0, all gate delays =1
Is the output stable time t > 2?

28

Example

g(1,i=2) : the set of input vectors under which

g gets stable to value = 1 than t =2
d
J>C \\ g
— 7
b — \ e ¢

_/ Onset:

stabilized by t=27?

C
g(1,t=2) =d(1,t=1) N f(1,t=1)

= (a(0,t=0) N b(0,t=0)) N (c(1,t=0) U e(1,t=0))

= lalb(c U &) =lalbc = S, (t=2)

g(1,t=) = onset = lalbc = g(1,t=2) = S,

29

Example

g(0,t=2) : the set of input vectors under which
g gets stable to value = 0 no later than t=2

—z>o : [N

I

b —¢ — ¢ f
I

g(0,t=2) = d(0,t=1) U f(0,t=1)
= (a(1,t=0) U b(1,t=0)) U (c(0,t=0) N e(0,t=0))
= (atb) + (lc N D) = a+b = S,(t=2)

g(0,t=x) = offset = a+b+lc = S, "

C

Example

g(0,t=2) : the set of input vectors under which
g gets stable to 0 no later than t=2

—1>C [N

o] e

—
\ e f
_//D'/ NOTstabilized by t=2

under abc=000

g(0,t=2) = a+b
g(0,t=00) = offset = a+b+!c
g(0,t=)\ g(0,t=2) = (a+b+!c) l(atb)=!alb lc =

31

Summary

False-path-aware arrival time analysis is well-understood
— Practical algorithms exist
« Can handle industrial circuits easily

Remaining problems
— Incremental analysis (make it so that a small change in the
circuit does not make the analysis start all over)
— Integration with logic optimization
— DSM issues such as cross-talk-aware false path analysis

32

Timed ATPG

Yet another way to solve the same decision problem

A generalization of regular ATPG:
— regular ATPG
 find an input vector that differentiates a fault-free circuit and a
faulty circuit in terms of functionality
— Timed ATPG
 find an input vector that exhibits a given timed behavior
« Timed extension of PODEM

33

