
Courtesy RK Brayton (UCB) and A
Kuehlmann (Cadence)

!1

Logic Synthesis

Timing Analysis

!2

Timing Analysis - Delay Models
• Simple model 1:

 Ak = arrival time = max(A1,A2,A3) + Dk
 Dk is the delay at node k, parameterized according to function fk and

fanout node k

• Simple model 2:

Dk

A1
A2

A3

Ak

A1
A2

A3

Ak 0

A1 A2 A3

Ak

Dk1 Dk2
Dk3

• Can also have different times for rise time and fall time

≡
Ak = max{A1+Dk1,
A2+Dk2,A3+Dk3}

!3

Static delay analysis

// level of PI nodes initialized to 0,
// the others are set to -1.
// Invoke LEVEL from PO
Algorithm LEVEL(k) { // levelize nodes
 if(k.level != -1)
 return(k.level)
 else
 k.level = 1+max{LEVEL(ki)|ki ∈ fanin(k)}
 return(k.level)
}

// Compute arrival times:
// Given arrival times on PI’s
Algorithm ARRIVAL() {
 for L = 0 to MAXLEVEL
 for {k|k.level = L}
 Ak = MAX{Aki} + Dk
}

!4

Required Times

Required times:

 given required times on primary outputs

• Traverse in reverse topological order (i.e. from primary outputs
to primary inputs)

• if (ki , k) is an edge between ki and k, Rki ,k = Rk - Dk

 (this is the edge required time)
• Hence, the required time of output of node k is
 Rk = min (Rk,kj

| kj ∈ fanout(k))

k

ki

j

Ski

Sk Sj

ki

!5

Propagating Slacks

Slacks: slack at the output node k is Sk = Rk-Ak

Since Rki,k=Rk-Dk

 Ski,k =Rki,k - Aki

 Ski,k + Aki = Rk-Dk = Sk + Ak - Dk

Since Ak = max {Akj } + Dk

 Ski,k = Sk + max {Akj } - Aki kj , ki ∈ fanin (k)
 Ski = min{Ski,j} j ∈ fanout (ki)

Notes:
• Each edge is the graph has a slack and a required time
• Negative slack is bad.

k

ki

j

Ski

Sk Sj

ki

!6

Sequential networks

• Arrival times known at l1 and l2

• Required times known at l3, l4, and l5

• Delay analysis gives arrival and required times (hence slacks) for
C1, C2, C3, C4

C3

C1
C2

C4

l1

l2 l3

l4

l5

!7

Static critical paths

Min-Max problem: minimize max{-Si , 0}

A static critical path of a Boolean network is a path P = {i1,i2,…,ip }
where Sik

, ik+1
 < 0

Note: if a node k is on a static critical path, then at least one of the
fanin edges of k is critical. Hence, all critical paths reach from an
input to an output.

Note: There may be several critical paths

!8

Example: Static critical paths

2 1

2 2 1

21

R2=5R1=5

A8=0 A9=0
98

0

0
1

0-1

-1
-1

-1
10

-1

-1

5

76

3

1 2

4

A1=6 R1=5
A2=5 R2=5

S1=-1 R3=3
S2=0 R7=1
S3,1=-1 R9=-1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges
Ski,k = Sk + max{Akj } - Aki , kj,ki ∈ fanin(k)

Sk = min{Sk,kj }, kj ∈ fanout(k)

1

4

2

34

56

!9

Timing analysis problems

We want to determine the true critical paths of a circuit in order to:
– determine the minimum cycle time that the circuit will function
– identify critical paths from performance optimization - don’t want to

try to optimize the wrong (non-critical) paths
Implications:

– Don’t want false paths (produced by static delay analysis)
– Delay model is worst case model. Need to ensure correctness for

case where ith gate delay ≤ Di
M

!10

Functional Timing Analysis

What is Timing Analysis?
 Estimate when the output of a given circuit gets stable

clock

Combinational
block

0

0

T0

!11

Why Timing Analysis?

Timing verification
– Verifies whether a design meets a given timing constraint

• Example: cycle-time constraint
Timing optimization

– Needs to identify critical portion of a design for further
optimization

• Critical path identification
In both applications, the more accurate, the better

!12

Timing Analysis - Basics
Naïve approach - Simulate all input vectors with SPICE

– Accurate, but too expensive
Gate-level timing analysis
 Focus of this lecture

– Less accurate than SPICE due to the level of abstraction, but
much more efficient

– Scenario:
• Gate/wire delays are pre-characterized (accuracy loss)
• Perform timing analysis of a gate-level circuit assuming

the gate/wire delays

Gate-level Timing Analysis

A naive approach is topological analysis
– Easy longest-path problem
– Linear in the size of a network

Not all paths can propagate signal events
– False paths
– If all longest paths are false, topological

analysis gives delay overestimate
Functional timing analysis = false-path-

aware timing analysis
– Compute false-path-aware arrival time

arr(x1)=0 arr(x2)=0

False
path
aware
arr(z)?

z

x1 x2

1

1

Example: 2-bit Carry-skip Adder

c_in

a0
b0

a1
b1

s0

s1

c_out

mux

Length 5
Length 1

 ripple carry adder

1
0

!15

False Path Analysis - Basics

Is a path responsible for delay?
– If the answer is no, can ignore the path for delay computation

Check the falsity of long paths until we find the longest true path
– How can we determine whether a path is false?

Delay underestimation is unacceptable
– Can lead to overlooking a timing violation

Delay overestimation is not desirable, but acceptable
– Topological analysis can give overestimate, but never give

underestimate

!16

Controlling/Non-Controlling Values

0 0 1

Controlling value of AND

Controlled value of AND

1 1

Controlling value of OR

Controlled value of OR

Non-Controlling value of AND

0

Non-Controlling value of OR

1 1 0

!17

Static Sensitization

A path is statically-sensitizable if there exists an input vector such
that all the side inputs to the path are set to non-controlling
values
– This is independent of gate delays

1
0

Controlling value!

These paths are not
statically-sensitizable

The longest true path
is of length 2?

 t=0
 t=0

 t=0

1
0

!18

Static Sensitization

• The (dashed) path is responsible for delay!
• Delay underestimation by static sensitization (delay = 2 when

true delay = 3)
– incorrect condition

0

0
1

2

1

2 3

0

!19

What is Wrong with Static Sensitization?

The idea of forcing non-controlling values to side inputs
is okay, but timing was ignored
– The same signal can have a controlling value at one time and

a non-controlling value at another time.

How about timing simulation as a correct method?

!20

Timing Simulation

2

1

4

1

1

0

0

2

1

4

2 3

Implies that delay = 0 for these inputs
BUT!

0 4

!21

2

1

4->2

1

1

Timing Simulation

0

0 2

2

1

2 3

3 4

Implies that delay = 4 with the same set of
inputs.

2

!22

What is Wrong with Timing Simulation?

If gate delays are reduced, delay estimates can increase

Not acceptable since
– Gate delays are just upper-bounds, actual delay is in [0,d]

• Delay uncertainty due to manufacturing
– We are implicitly analyzing a family of circuits where gate

delays are within the upper-bounds

!23

Monotone Speedup Property

Definition: For any circuit C, if
– C’ is obtained from C by reducing some gate delays, and
– delay_estimate(C’) ≤ delay_estimate(C),

then delay_estimate has Monotone Speedup property

Timing simulation does not have this property

!24

Timing Simulation Revisited

2

1

4

1

1

0

0

2

1

4

3

4

4

means that the rising signal
occurs anywhere between
t = -infinity and t = 4.

X-valued simulation

40

Timing Simulation Revisited

Timed 3-valued (0,1,X) simulation
– called X-valued simulation

Monotone speedup property is satisfied.

Underlying model of
• floating mode condition [Chen, Du]

– Applies to “simple gate” networks only

• viability [McGeer, Brayton]
– Applies to general Boolean networks

False Path Analysis Algorithms
Checking the falsity of every path explicitly is too expensive - exponential # of

paths
State-of-the-art approach:

1. Start: set L = Ltop- ! = topological longest path delay - !  
Lold = 0

2. Binary search:
If (Delay(L)) (*)

 ! L = |L-Lold|/2, Lold = L, L = L + ! L
 Else, ! L = |L-Lold|/2, Lold = L, L = L - ! L

If (L > Ltop or ! L < threshold), L = Lold , done  

(*) Delay(L) = 1 if there an input vector under which an output gets stable only at time t
where L ≤ t ?  
Can be reduced to
– a SAT problem [McGeer, Saldanha, Brayton, ASV] or
– a timed-ATPG [Devadas, Keutzer, Malik]

!27

SAT-based False Path Analysis

Decision problem:
Is there an input vector under which the output gets stable only after t = T ?

Idea:
1. characterize the set of all input vectors S(T) that make the output

stable no later than t = T
2. check if S(T) contains S = all possible input vectors

This check is solved as a SAT problem:
Is S \ S(T) empty? - set difference + emptiness check
• Let F and F(T) be the characteristic functions of S and S(T)
• Is F !F(T) satisfiable?

!28

Example

Assume all the PIs arrive at t = 0, all gate delays = 1
Is the output stable time t > 2?

a

b

c

d

e f

g

!29

Example
 g(1,t=2) : the set of input vectors under which
 g gets stable to value = 1 no later than t =2

a

b

c

d

e f

g

 g(1,t=2) = d(1,t=1) ∩ f(1,t=1)

 g(1,t=∞) = onset = !a!bc = g(1,t=2) = S1

Onset:
stabilized by t=2?

= (a(0,t=0) ∩ b(0,t=0)) ∩ (c(1,t=0) ∪ e(1,t=0))
= !a!b(c ∪ ∅) = !a!bc = S1(t=2)

!30

Example
 g(0,t=2) : the set of input vectors under which
 g gets stable to value = 0 no later than t=2

a

b

c

d

e f

g

 g(0,t=2) = d(0,t=1) ∪ f(0,t=1)
 = (a(1,t=0) ∪ b(1,t=0)) ∪ (c(0,t=0) ∩ e(0,t=0))
 = (a+b) + (!c ∩ ∅) = a+b = S0(t=2)
 g(0,t=∞) = offset = a+b+!c = S0

!31

Example
 g(0,t=2) : the set of input vectors under which
 g gets stable to 0 no later than t=2

a

b

c

d

e f

g

 g(0,t=2) = a+b
 g(0,t=∞) = offset = a+b+!c

Offset:
NOTstabilized by t=2
under abc=000

 g(0,t=∞) \ g(0,t=2) = (a+b+!c) !(a+b) = !a !b !c = satisfiable

!32

Summary

False-path-aware arrival time analysis is well-understood
– Practical algorithms exist

• Can handle industrial circuits easily
Remaining problems

– Incremental analysis (make it so that a small change in the
circuit does not make the analysis start all over)

– Integration with logic optimization
– DSM issues such as cross-talk-aware false path analysis

!33

Timed ATPG

Yet another way to solve the same decision problem

A generalization of regular ATPG:
– regular ATPG

• find an input vector that differentiates a fault-free circuit and a
faulty circuit in terms of functionality

– Timed ATPG
• find an input vector that exhibits a given timed behavior
• Timed extension of PODEM

