Two-Level Logic Optimization
Heuristic Minimization using the Unate Recursive Paradigm

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla
Two-Level Heuristic Minimization: Basic Ideas

- Generation of all primes can be infeasible
- Exact minimization might require a lot of work, large table covering problems, particularly for multi-output functions
- Heuristic minimization: Solve large problems quickly, maybe sub-optimally, but the solutions are quite close to optimal
- Espresso: a two-level logic minimizer
- Espresso: The quintessential case-study of CAD heuristics
- Think Primality & Irredundancy
 - Not every prime and irredundant cover is minimum, but the converse is true.
 - Search for prime and irredundant covers, with lower cost
 - Search should be fast, should hill climb, and be intelligent
The Basic Espresso Loop

Input: $F =$ ON-SET cover, $D =$ DC-SET cover

$F =$ Expand(F, D);
$F =$ Irredundant(F, D);

repeat

 cost = $|F|$;
 $F =$ Reduce(F, D);
 $F =$ Expand(F, D);
 $F =$ Irredundant(F, D);

until $|F| < \text{cost}$;

$F =$ Make_Sparse(F);
The Actual Espresso Algorithm

Input: $F =$ ON-SET cover, $D =$ DC-SET cover

$F =$ Expand(F, D);

$F =$ Irredundant(F, D);

$E =$ Essentials(F, D);

$F =$ $F - E$;

repeat

 cost$_1 =$ |F|;

 repeat

 cost$_2 =$ |F|;

 $F =$ Reduce(F, D);

 $F =$ Expand(F, D);

 $F =$ Irredundant(F, D);

 until |F| < cost$_2$;

 $F =$ last_gasp(F, D);

until |F| < cost$_1$;

$F =$ Make_Sparse(F);
The **Expand** operator

- Increase the size of each implicant, such that the smaller ones can be covered and dropped
- Maximally expanded implicants = primes
- IOW, **Expand** makes a cover prime and minimal w.r.t. **SCC**

Approach:

- Take a cube (e.g. abc), drop a literal (e.g. ab)
- Check if the expansion is valid. If valid, continue expansion.
- If invalid, **Expand** in another direction (e.g. $abc \rightarrow ac$)
How to Check if Expanded Cube is Valid?

Two ways:

- Is the Expanded cube $\alpha \subseteq (F \cup D)$? This is “containment check”!
 - Containment: $\alpha \in f \iff f_\alpha$ is Tautology
 - Another approach: containment: $\alpha \in f \iff (\bar{\alpha} + f)$ is Tautology

- Does the Expanded cube intersect with the OFF-set?
 - Requires OFF-set computation: $f' = x \cdot (f_x)' + x' \cdot (f_{x'})'$
 - Once again: use recursive paradigm for complement computation
Containment as Tautology Check: Implementation

Tautology Check using Shannon’s Expansion: \(f = xf_x + x'f_x' \)

- A cover \(f \) is **TAUTOLOGY** iff both cofactors are **TAUTOLOGY**
- Use the **Unate Recursive Paradigm**
 - Choice of splitting variable: pick the highest binate variable for expansion
 - Terminal cases of recursion?
 - When the cover of \(f \) is a single cube, \(f \neq 1 \)
 - When the cover of \(f \) is unate in (at least) one variable
 - Exploit unateness: A +ve unate \(f \) is **TAUTOLOGY** iff \(f_x' = 1 \)
 - Exploit unateness: A -ve unate \(f \) is **TAUTOLOGY** iff \(f_x = 1 \)
 - Exploit unateness: A unate \(f \) is **TAUTOLOGY** iff the contained cofactor is **TAUTOLOGY**

Example: \(f = ab + ac + ab'c' + a' \), is \(f = 1? \)
Example: \(f = ab + ac + a' \), apply \(\text{Expand}(f) \) operator.
Detect Essential Primes

Theorem

Let $F = G \cup \alpha$, where α is a prime disjoint from G. Then α is an essential prime iff $\text{CONSENSUS}(G, \alpha)$ does not cover α.

- $G = \text{Remove from } F \text{ the minterms covered by } \alpha$
- α is NOT essential if it can be covered by other primes
- Some cubes in G should be expandable to cover α
- Analyze those cubes in G that are distance 1 from α
- Example: $f = a'b' + b'c + ac + ab$, is $\alpha = a'b'$ essential?
What is the Reduce Operator?

- Decrease the size of each implicant, so that successive expansion may lead to another cover of smaller cardinality.
- Reduced implicant’s validity — function should still be covered.
- Cardinality of F should not increase.
- A redundant implicant be reduced to void!
- To reduce α, remove from F those minterms that are covered by $F - \{\alpha\}$.
- Can be done by $\alpha \cap (F - \{\alpha\})$?
- However, ensure that the result yields a single implicant, otherwise the cardinality of F may increase!
 - Need to analyze the “supercube” of $(F - \{\alpha\})$.
 - Supercube of $(\alpha, \beta) = \text{smallest single cube containing both.}$
More on the Reduce Operation....

Example: \(f = c' + a'b' \). Draw the cover on a 3-D cube.

- Reduce \(\alpha = c' \), so \(F - \alpha = \beta = a'b' \)
- \(\overline{F} - \alpha = a + b \)
- Intersect: \(\alpha \cap (a + b) = ac' + bc' \). Supercube of \(ac', bc' = 1 \). So \(c' \cap 1 = c' \) implies no valid reduction!
- Now reduce \(\alpha = a'b' \). So, \(F - \alpha = \beta = c' \)
- Compute \(\overline{F} - \alpha = c \), and supercube of \(c = c \) itself!
- \(\alpha \cap c = a'b'c \), so the cube \(a'b' \) reduces to \(a'b'c \) without reducing the cardinality of \(F \). Reduced \(F = \{c', a'b'c\} \)
- Now this cover can be expanded in other directions for hill-climbing