And-Invert-Graphs (AIGs) for Equivalence Verification, SAT Modulo Theory (SMT) Solvers, and the Motivation for Algebraic Reasoning

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

August 28, 2017
Where does SAT fail?

For hard UNSAT instances, such as equivalence verification

Figure: Miter the circuits F, G

Prove UNSAT, or find a counter-example

Limitations: No internal structural equivalences

EDA-techniques: Circuit-SAT, AIG-reductions, constraint-learning

Key idea: identify internal structural equivalences
Combinational Equivalence Checking (CEC)

- Direct application of SAT to CEC is inefficient
- Bug-catching (UNSAT) is easier, proof of correctness is harder
- Datapath-dominated circuits are particularly harder to verify
- How to use the power of SAT, along with logic design, synthesis, and optimization concepts, to efficiently solve the CEC problem?
- How was CEC solved prior to SAT and BDDs?
 - Techniques borrowed heavily from circuit synthesis, testing and simulation
 - Logic Synthesis = sequence of transformations
 - Verification = reverse these transformations? Kind of...
Circuit-SAT solvers & AIGs

- **CSAT:** SAT solvers, specifically tuned to operate on circuits
- **And-Invert-Graphs (AIGs):** An engine to enable circuit-SAT
- The origins of AIGs are in logic synthesis and technology decompositions
- AIGs are a versatile data-structure to represent Boolean functions and circuits
- AIGs can be functionally reduced (FRAIGs)
- FRAIGs are *semi-canonical*, help to identify sub-circuit equivalences
- The tool ABC from UC Berkeley (URL on class website): AIG based logic synthesis and verification
AIGs are Boolean networks composed of 2-input AND gates and Inverters

- Construction time proportional to circuit size (unlike BDDs)
- Enhanced with Simulation, SAT & BDDs: very powerful for synthesis and verification
- Build AIGs from circuits, FRAIG-sweep, solve SAT, CEC, Synthesis, etc.
AIGs - Examples

\[F(a, b, c, d) = \overline{d} \left((ab)\overline{c} + a(b\overline{c}) \right) + d(\overline{a}c + bc) \]

11 Nodes
5 Levels

\[F(a, b, c, d) = ac + d(\overline{a}c + bc) \]

6 nodes
4 levels
FRAIG: AIG re-write rules

- Simple rules, non canonical, but very quick AIG rewriting
- Swap inputs, merge nodes, look-up sub-structures

Figure: AIG rewrite examples
Construct FRAIGs, merge equivalent nodes

Simulate for a few (say \(l = 2^{16} \)) inputs

If nodes \(n_1, n_2 \) evaluate the same for \(l \) inputs
 - Miter sub-circuits at \(n_1 \) and \(n_2 \), solve sub-circuit CEC
 - If \(n_1 = n_2 \), simplify original miter: make \(n_1 = n_2 \) a primary input; continue until CEC solved.

Very simple, yet very successful approach, used in industry

AIGs can solve CEC for bit-level and synthesized designs
Imagine a Bit-Vector RTL description
Imagine a Bit-Vector RTL description

\[(x \neq y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))\]
Imagine a Bit-Vector RTL description

\[(x \neq y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))\]

How will you solve SAT on this formula?
Imagine a Bit-Vector RTL description

$$(x \neq y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))$$

How will you solve SAT on this formula?

Also, x, y, z are bit-vectors: $[31 : 0]$
Imagine a Bit-Vector RTL description
\[(x \neq y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))\]
How will you solve SAT on this formula?
Also, \(x, y, z\) are bit-vectors: [31 : 0]
\[(x > y) \lor (x < y) \land (2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))\]
Imagine a Bit-Vector RTL description

\[(x \neq y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))\]

How will you solve SAT on this formula?

Also, \(x, y, z\) are bit-vectors: [31 : 0]

\[\underbrace{(x > y)}_{a} \lor \underbrace{(x < y)}_{b} \land \underbrace{((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))}_{c} \]

Solve SAT: \((a \lor b) \land (c \lor \neg(d \land e))\)
Imagine a Bit-Vector RTL description

$$(x \neq y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))$$

How will you solve SAT on this formula?

Also, x, y, z are bit-vectors: $[31:0]$

$$(x > y) \lor (x < y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))$$

Solve SAT: $$(a \lor b) \land (c \lor \neg(d \land e))$$

Solution: $a = b = c = d = e = 1$
Imagine a Bit-Vector RTL description

\[(x \neq y) \land ((2 \times x < z) \lor \neg((x - y \geq z) \land (z \leq y)))\]

How will you solve SAT on this formula?

Also, \(x, y, z\) are bit-vectors: [31 : 0]

\[
\begin{align*}
(a \lor b) \land (c \lor \neg(d \land e))
\end{align*}
\]

Solve SAT: \((a \lor b) \land (c \lor \neg(d \land e))\)

Solution: \(a = b = c = d = e = 1\)

Combine “solvers” for different theories!
A mechanism to combine many “theories” and solvers together
- Theory of difference constraints and logic
- Equality and uninterpreted functions
- Quantifier-free bit-vector formulas
- All combined with First order logic

Approach: Use SAT as a base-solver, and propagate solutions to theory solvers
Spurious solutions (ones disproved with theory solvers) are added as “lemma”, and SAT is re-solved
See example on next slide
(x ≠ y) ∧ ((2 * x < z) ∨ ¬((x − y ≥ z) ∧ (z ≤ y)))

Solve SAT (a ∨ b) ∧ (c ∨ ¬(d ∧ e))

Solution: a = b = c = d = e = 1 creates a linear program

If linear program infeasible, add ¬(a ∧ b ∧ c ∧ d ∧ e) to the CNF, resolve SAT
Word-Level RTL CEC is still Challenging

- Multiplication is hard to solve (no one knows how to solve it!)
- SMT relies on “bit-blasting”, and gives a huge problem to SAT

Figure: \(x^2 + x \equiv x(x + 1) \)
Motivation for Algebraic Computation

- Modeling for bit-precise algebraic computation
 - Arithmetic RTLs: functions over k-bit-vectors
 - k-bit-vector \mapsto integers $(\text{mod } 2^k) = \mathbb{Z}_{2^k}$
 - k-bit-vector \mapsto Galois (Finite) field \mathbb{F}_{2^k}

- For many of these applications SAT/SMT fail miserably!

- Computer Algebra and Algebraic Geometry + SAT/SMT
 - Model: Circuits as polynomial functions $f : \mathbb{Z}_{2^k} \to \mathbb{Z}_{2^k}$, $f : \mathbb{F}_{2^k} \to \mathbb{F}_{2^k}$
 - Apply symbolic and algebraic computing concepts for verification
 - And this topic is the core focus of this course